

Safety technique

- Safety switching devices
- Standstill / speed monitoring
- Multifunctional safety devices
- Wireless Safety System
- Safety switches

Guard locks
Key transfer

Monitoring technique

Residual current monitors
Insulation monitors
Insulation fault location system
Measuring and monitoring relays
Fault annunciators and fault annunciator systems
SMS-Telecontrol module

Power electronics

- Solid-state relays /- contactors
- Reversing contactors
- Softstarters
- Motor brake relays
- Speed and phase controllers
- Multifunctional motor control units

Control technique

" Latching / interface / switching relays

- Interface modules
- Power supply units
- / / O modules
- CANopen PLC
- CANopen I / O modules

Time control technique

"Multifunction relays

- Flasher relays

Timers
Cyclic timers on delayed

- Fleeting action relays
- Pulse extender
- Star delta timers

Installation technique

[^0]
-
Machinery and plant

- Power generation/distribution
- Oil and gas industry
- Automation
- Transport and material handling systems
- Rail technology
- Aviation/marine industry
- Paper and printing industry
- Food industry
- Rubber/plastics industry
- Heating and refrigeration
- Automotive
- Mining/metal working
- Chemical/pharmaceutical applications
- Medical technology
- Water/waste water treatment

Cable cars/ski lifts
... and wherever safety has high priority.
We can cover your industrial applications as well!

DOLD =
 Solutions for you

The DOLD philosophy, "Our experience. Your safety" constitutes our program: Offering solutions based on over 80 years of experience with a workforce of more than 400 employees, we manufacture high quality products using state-of-the-art production plant at our Furtwangen facility in Germany.

The comprehensive product range includes relay modules, safety relays with positively-driven contacts and electronic housings with virtually unparalleled production detail. The combination of know-how, innovation and experience makes us one of the leading worldwide manufacturers.

Apart from standard solutions, we are also the right partner when individual industrial solutions with that special touch are required.

Staying in close contact with our customers is very important to us. We listen, analyze and act by offering flexible, custom high-tech solutions, from a single source.

Thanks to our own development laboratory, highly automated production facilities with a modern tool \& die shop in addition to injection moulding facility togehter with a well organized sales and marketing department, we guarantee high quality and short delivery times. Your benefits: Increased plant and machine availability, planning reliability and low production costs.

With soft starters by DOLD, you'll have an intelligent, reliable, and user-friendly motor start and motor management system.

Smart Drive Solutions

Demanding drive tasks call for high-performance and flexible device solutions. High-performing electronics by DOLD include a wide range of products such as solid state contactors, motor starters, soft start
and braking devices, as well as reversing contactors, speed controllers, and multifunctional motor control devices.

3-phase controlled soft starter device with integrated monitoring function for soft starting motors. With just 67.5 mm width, the intelligent motor controller offers soft starting, motor protection, start-up current limiting, voltage and phase sequence monitoring in a single device.

PF 9029

- Powerful soft-starter device

DCB

Semiconductor contactors from DOLD have a long service life and are used everywhere that high switching frequencies and switching cycle are required.
 \title{
POWERSWITCH
 \title{
POWERSWITCH

 - Intelligent control

 - Intelligent control and monitoring
} and monitoring
}

The intelligent, hybrid motor starter offers up to 6 functions in a compact enclosure with just 22.5 mm width. It combines the functions of reversing, soft starting, soft run-down, and protection of 3-phase motors up to 4 kW in a single device.

Table of contents

Function Page
General
Product range 3
DOLD - Solutions for you 4
News 6
Table of contents 9
Alphabetical index 10
Function index 11
Product selections

- Solid-state relays / - contactors 12
- Reversing contactors 13
- Softstarters 14
- Motor brake relays 15
- Speed and phase controllers 15
- Multifunctional motor control units Foreword 16
General overview of catalogues 195
Solid-State Relays / - contactors
Product selection 12
Solid-state relay / - contactor 16
- for resistive load 38
- with pulse package control 56
- with load circuit monitoring. 59
Solid-state contactor 16
- with pulse package control 34
- with current monitoring 44
Reversing Contactors
Product selection 13
Reversing contactors 74
- with current monitoring 78
- with softstart and active power monitoring 83
Softstarter
Product selection 14
Softstarter and softstop device 87
Softstarter 91
Softstarter for heating pumps 114
Softstart / softstop with reverse function 120
Softstarter with DC-brake 127
Softstarter for 1-phase motors 135
Motor brake relays
Product selection 15
Motor brake relays 144
Speed and phase controllers
Product selection 15
Phase controller 161
Speed controller 164
Multifunctional motor control units
Product selection 15
Smart motorstarter
- with Modbus 172
- with autom. phase sequence correction 189

Alphabetical index

Power electronics

Product selection

Solid-state relays / -contactors POWERSWITCH

Solid-state relay: For screwing on the heat sink.
Solid-state contactors: With integrated heat sink, top hat rail mounting

Function				2 0										$\stackrel{\otimes}{2}$	-
Solide-state contactor	50	25	15	480		+	+				+	+	$\begin{gathered} 22,5 ; \\ 45 ; \\ 90 \end{gathered}$	BF 9250	21
Solide-state contactor	50	25	15	480		+							$\begin{gathered} 22,5 \\ 45 \\ 90 \end{gathered}$	BF 9250/_ _ 8	29
Semiconductor contactor with analogue input for pulsed output	50			480	24				0 ... 10	$4 . .20$	$+$		$\begin{gathered} 22,5 \\ 45 \\ 90 \end{gathered}$	BF 9250/002	34
Solide-state relay / - contactor for resistive load	88			600		+	+	+					$\begin{gathered} 22,5 \\ 45 \\ 67,5 \end{gathered}$	PK 9260	38
Semiconductor contactor with current monitoring	40			400			+				+	+	$\begin{array}{r} \text { 45; } \\ \text { 67,5; } \\ 112,5 \end{array}$	BH 9251	44
Solide-state contactor	50	25	15	480		+					$+$	+	$\begin{array}{r} 45 \\ 67,5 \\ 112,5 \end{array}$	BH 9250	21
Solide-state relay / - contactor	50			600		+	$+$						45	PH 9260	48
Solide-state relay / - contactor		48		480		+							45	PH 9260.92	53
Solide-state relay / - contactor with analogue input for pulse package control	50			480						$4 . .20$			45	PH 9260/042	56
Solid-state relay / - contactor	40			480	24	+						+	45	PH 9270	59
Solid-state relay / - contactor with load current measurement	45			480	24	+						+	45	PH 9270/003	64
Solid-state relay / - contactor			60	600		+		+					67,5	PI 9260	67

Power electronics

Product selection

Reversing contactors POWERSWITCH

Function											$\stackrel{\circ}{2}$	\%
Reversing contactor	20	24 ... 480			+	+	+	+	Switch cabinet	$\begin{gathered} \hline 45 ; \\ 67,5 ; \\ 112,5 \end{gathered}$	BH 9253	74
Reversing contactor with current monitor	20	24 ... 480	+	+	+		+	+	Switch cabinet	$\begin{gathered} 45 ; \\ 67,5 ; \\ 112,5 \end{gathered}$	BH 9255	78
Reversing contactor with softstart and active power monitoring	12	400		+			+	+	Switch cabinet	90	B1 9254	83

Zero-voltage switching with integrated electrical interlock and heat sink, top hat rail mounting

Power electronics

Product selection

Softstarters MINISTART

Function				\sum 0 0 0 0 0 0 0			$\begin{aligned} & \underset{\xi}{\varepsilon} \\ & \frac{1}{\omega} \\ & \frac{5}{5} \\ & \dot{0} \end{aligned}$	$\stackrel{\otimes}{2}$	\#
Softstarter with softstop	4		+	480	+	T; M	22,5	UG 9019	87
Softstarter		1,5		230			35	IL 9017	91
Softstarter with softstop		1,5		230			35	IL 9017/300	93
Softstarter		1,5		230			35	SL 9017	91
Softstarter	5,5	3		480			45	BA 9010	95
Softstarter with softstop	5,5			460	$+$	T	45	BA 9019	98
Softstarter with softstop	5,5			460	+	T	45	BA 9026	101
Softstarter and softstop device	22		+	400		T; M	45; 52,5	GF 9016	104
Softstarter	7,5		+	400		T; M	45	UH 9018	108
Softstarter for heating pumps	18,5		+	460	+	T; M	67,5	PF 9029	114
Softstart / softstop with reverse function	0,75		+	400	+	T	72	RP 9210/300	120
Softstarter	15			480	+	T	90	BI 9025	124
Softstarter with DC-brake	15		+	480	$+$	T; M	90	BI 9028	127
Softstarter for 1-phase motors		5	+	230	$+$	T; M	90	BI 9028/900	135
Softstarter	11			480	+	T	90	BL 9025	124
Softstart- / softstop device	110		+	575	+	T; M	98; 145; 202	GI 9014	138
Softstarter	11	5,5		480			100	BN 9011	95
Softstart- / softstop device	800		+	525	+	T; M	156... 574	Gl 9015	141

Power electronics

Product selection

Motor brake relays MINISTOP

Speed and phase controllers

Function		Power 3 AC-Motors 400 V [kw]		$\begin{aligned} & \text { 䓂 } \\ & \text { B } \\ & 0 \\ & 0 \\ & \text { O } \\ & \overline{\bar{C}} \\ & \stackrel{0}{0} \\ & \text { © } \end{aligned}$		Temperature Monitoring		$\begin{aligned} & \underset{E}{E} \\ & \stackrel{5}{5} \\ & \text { 产 } \\ & \vdots \end{aligned}$	$\stackrel{\otimes}{2}$	-
Phase controller	0,3		1		+	+	Distribution board	53	IN 9017	161
Speed controller, 1-phase	1,5		1	+	+	+	For outdoor installations	100; 122	SX 9240.01	164
Speed controller, 3-phase		5,5	3	+	+	+	For outdoor installations	$\begin{gathered} 100 ; 122 ; \\ 168 \end{gathered}$	SX 9240.03	168

Multifunctional motor control unit MINISTART

Function		$\begin{aligned} & \sum \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \sum \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbb{T} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \sum \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{\pi}{0} \\ & \frac{\pi}{0} \\ & \frac{\lambda}{\bar{W}} \\ & \frac{1}{\tau} \end{aligned}$		0 0 0 0 0 0 0 0 0 I 0 0 0 0 0					$\begin{aligned} & E \\ & E \\ & E \\ & \frac{n}{5} \\ & \vdots \end{aligned}$	$\stackrel{\square}{\square}$	-
Smart motorstarter	5		200 ... 480	24				+		Modbus RTU	22,5	UG 9410	172
Smart motorstarter	7	230		24				+		Modbus RTU	22,5	UG 9411	177
Smart motorstarter	9		$200 . . .480$	24	$+$			+	+		22,5	UG 9256	183
Smart motorstarter with autom. phase sequence correction	9		$200 . . .480$	24	+			+	+		22,5	UG 9256/804	189
Smart motorstarter with autom. phase sequence correction	9		$200 . . .480$	24	+			+	+		22,5	UG 9256/807	189

Solid-State Contactors

Solid-state Contactors - Basics and applications

Application fields

Solid-state contactors and relays proved to be good in industrial applications where high switching frequencies or a large number of switching cycles are required. With their long service life and wearless switching they solve switching and control tasks in specific applications in an extremely economic manner. Fields of application include:

- Extrusion and injection moulding plants
- Heating controls
- Soldering lines
- Hot-melt glueing robots
- Oven controls
- Three-phase motors
- Lighting controls
- Materials handling installations
- Dispensing equipment
- Packaging machines
- Automats
- Copiers
- Pumps
- Automated self-service machines
- Traffic lights
- ... and many more

Technology

Like mechanical contactors or relays, solid-state relays provide a full electrical isolation between control and load circuit thanks to optocouplers. In contrast to mechanical contacts the solid-state relay in the load circuit has a finite, although high resistance even in blocked (opened) state through which low leakage currents may flow to the load. Two antiparallel connected thyristors suited to switch alternating voltage in a range up to 100 Hz are used as semiconductors.

Advantages compared to contacts include:

- Long service life,
$>10^{9}$ switching cycles
- No wearing \rightarrow high reliability
- Noiseless switching
- Insensitive to surge currents
- Resisting to mechanical shocks and vibrations
- High resistance to dirt and chemicals
- Very low control power, logic compatible
- Low electromagnetic radiation
- No contact bounce, high switching frequencies

This is opposed by following disadvantages:

- Power loss in ON state, that means a heat sink is required
- Leakage current in OFF state; negligible in industrial practice
- Limited resistance to voltage spikes. Normally, this is counteracted by integrated RC combinations or MOVs.

1. Zero crossover switches

In practice, zero crossover switching solid-state relays became widely prevalent. The thyristors are switched on at the zero crossing of the alternating mains voltage. A special control electronic is used for this. That means the load current only flows 10 ms after application of the control voltage. Switching off occurs in a similar way. Due to physical laws the load current continues to flow after the control power is removed until the zero crossing is reached. The delay time between OFF command and OFF state is 10 ms as a maximum.

Current and voltage characteristics in the AC system with zero-voltage switching solid-state contactor

Zero crossover switching solid-state relays are mainly used for switching ohmic loads. These include all types of electric heaters in industrial installations. Less often they are used to switch inductive loads such as motors and transformers.

2. Instantaneous / peak voltage switches

There are only a few applications for instanteanously and peak voltage switching solid-state relays. Therefore, DOLD manufactures these devices only on request.

3. Full-wave control

Analogue full-wave control is an interesting control method, but for ohmic loads only. In contrast to phase-angle control, this method is EMC-conform. Thanks to switching at full sinusoidal half-waves the electromagnetic radiation and conducted interference are reduced to a minimum. Such devices generate a corresponding number of half-waves on the load output in proportion to an analogue signal on the control input. In combination with a set-point adjuster, temperature controllers can be easily built in this way.

4. Load circuit monitoring

The merger of power electronics and monitoring equipment is an interesting device combination. Solid-state relays with load circuit monitoring can signal following faults:

- Broken load circuits
- Partial-load faults
- Broken thyristor
- Thyristor short-circuit (failed thyristor)
- Missing load voltage
- Threshold over/underrun

In this way, changes in the load circuit can be exactly monitored. In particular, resistance variations of ohmic loads such as heating cartridges in plastic injection molding machines are interesting in this connection. In these cases, it is crucial to know when the condition of the plant deteriorates before a failure occurs, which would cause reject production. If a solid-state relay fails and is no longer able to cut off the heaters in injection molding machines, they will be are cut off by mechanical contactors that are arranged upstream of the solid-state relays. For this, the signal output on the solid-state relay is used, which signals the failure to an overriding control system. This method outclasses the temperature monitoring in terms of swiftness and may prevent fire.

5. Reversing contactor

Solid-state relays can be qualified for universal use if combined to reversing contactors. Together with further functions such as load monitoring, integrated soft start and alarms they are perfect control units for electric motors. Integrated thermal monitoring and electrical interlocking of both directions of rotation top the function range off. Thanks to their compact design, these devices can be a proper alternative to frequency converters for simple applications.

Solid-State Contactors

Notes for users

To ensure a trouble-free operation users have to consider following issues: cooling, protection by fuses and isolation of solid-state contactors.

1. Cooling

Heat sinks have to be selected because of the heat loss arising in the semiconductor. The thermal resistance $R_{\text {th }}$ is the characteristic parameter of a heat sink and is measured in $[K / W]$ ($K=$ Kelvin, $W=$ Watt). Where: The higher the thermal resistance the poorer is the solid-state relay cooling. The relation between temperature of the solid-state relay, loss power and heat sink is as follows:

$$
T_{\mathrm{HLR}}=\mathrm{P}_{\mathrm{L}} \mathrm{R}_{\mathrm{th}}+\mathrm{T}_{\mathrm{amb}} .
$$

$T_{\text {HLR }}$	$[K]:$	Temperature on the bottom of the solid-state relay
$T_{\text {amb. }}$	$[K]:$	Ambient temperature
P_{L}	$[W]:$	Loss power
$R_{\text {th }}$	$[K / W]:$	Thermal resistance of the heat sink

The loss power "struggles" through the thermal resistance Rth between bottom of the solid-state relay and environment and causes a corresponding overheating in the semiconductor. The user can only influence the overtemperature by selecting a suited heat sink that affects the thermal resistance. The objective should be to keep the temperature within the semiconductor below $125{ }^{\circ} \mathrm{C}$. To exempt users from carrying out calculations by their own the data sheets include selection recommendations for heat sinks. These have to be mounted on the solid-state relay by means of heat transfer compound or graphite foil. However, many devices are available ready-to-use complete with heat sink. The loss power within the semiconductor can be calculated according to the equation below:
$P_{L}=I_{L} U_{T O}$

P_{L}	$[\mathrm{W}]:$	Loss power
I_{L}	$[\mathrm{A}]:$	Load current
U_{TO}	$[\mathrm{V}]:$	Forward voltage of the semiconductor (typically approx. 1.3 V)

Using this equation users can quickly determine the heat to be carried off from the switch cabinet enabling them to properly rate the cabinet ventilation.

2. Semiconductor protection by fuses

The $I^{2} t$ value measured in $\left[A^{2} s\right]$ is an essential parameter of a semiconductor. It measures the heat development in case of a short circuit that would destroy the semiconductor. To protect the semiconductor a highspeed fuse has to be selected the $I^{2} t$ value of which is smaller than that of the semiconductor.

$$
\mathrm{I}^{2} \mathrm{t}_{\text {Fuse }}<\mathrm{I}^{2} \mathrm{t}_{\text {Semiconductor }}
$$

For detailed information see the data sheets for our products. In recent time, users more and more prefer to use normal miniature circuit breakers instead of expensive semiconductor fuses. This requires a higher rating (higher $I^{2} \mathrm{t}$ value) of the semiconductors to ensure that they can withstand a short-circuit without damages. After a failure, it is then possible to restart the installation very quickly.

3. Disconnecting device for isolation from power

In OFF state, semiconductors cannot establish an electric isolation from the mains. Therefore, the miniature circuit breaker described under 2 . has the additional function of being a disconnecting device for isolation from the system. This is required by VDE standards to be able to perform maintenance work safely.

Softstarters

Why are softstarters used?

1. Starting motors

Three-phase asynchronous motors are most common as drives in today's machinery and installations. In the power range up to 5.5 kW , such motors are mostly started by a direct-online starter, and by star/delta starters above this power. When doing so, it may happen that the driving elements and thus the driven machine connected to them are suddenly loaded and therefore overloaded in the moment of starting. Also work pieces and handled parts may be damaged. These problems can be perfectly solved by the use of softstarters. By phase-angle control of the mains voltage they provide for a slow increase of motor voltage. The torque developed by the motor is built up gradually and allows a smooth and thus gentle start. This reduces wear and tear and extends the service life of the whole installation.

2. Stopping motors

There are three options for stopping drives:

2.1

The motor is cut off and coasts to a standstill.
2.2

Drives that must not come to a sudden standstill when cut off can be softly stopped using a softstop function. That means the coasting time is extended. For this, the voltage applied to the motor is gradually decreased. This may be required for conveyor drives or pumps, for example. These can come to a sudden standstill after a cut-off due to large counter-torques.
2.3

Drives with a large centrifugal mass (e.g. centrifuges, planing machines) that coast for a long time after cut-off must be quickly decelerated for safety and time reasons in the most cases.

2.3.1

For this, devices (BI 9028) are offered that have a brake function integrated rather than a softstop function. The braking effect is obtained by injection of a direct current in the motor windings.

2.3.2

Using a trick, the braking effect can also be obtained in a different way For soft plugging, two mains phases are interchanged upstream of the softstarter. This method only works with 2-phase or 3-phase controlled softstarters (Fig. 2 and 3). When the dead stop is reached the power must be disconnected immediately. Otherwise the drive would restart in reverse direction. This requires the use of time relays or zero-speed switches. Please request our Application Guide AP 23/24 where this issue is described in more detail.

3. Three types of softstarters

From the technical aspect there is one main distinctive feature between the devices, namely whether one, two or all three mains phases to the motor are controlled by a power semiconductor. For this, see the figures 1 through 3.

Fig. 1:
1-phase controlled

Fig. 2:
2-phase controlled

Fig. 3 :
3-phase controlled

4. Starting currents of three-phase motors

Furthermore, softstarters are used to reduce the motor starting current by more than 50%. This is more and more frequently required, not only for weak systems. Weak systems include separate networks, emergency generating sets, dead-end feeders (spurs) or underdimensioned fuses.
However, the starting current can not be reduced with single-phase controlled softstarters because a high current flows in both directly connected phases, which is even higher than with direct-online starter. Therefore, such devices are similar to the KUSA connection that was usual in former times. Instead of a resistor, now the thyristor is arranged in the motor branch. For that reason, single-phase controlled softstarters must always be started using a mains contactor, and therefore they have no softstop function as well. Only two-phase or three-phase controlled devices can also reduce the starting current. Therefore, they are suited as replacement for star-delta motor starters.

5. Starting currents of single-phase motors

The motor current of these motors can also be reduced by means of a softstarter. For this, there are dedicated devices such as the IL 9017. But the single-phase controlled model BA 9010 mainly designed for threephase motors can also be used. It must be specifically connected (see the data sheet).

6. Installation

Normally, semiconductor fuses are no longer required for equipment protection. The motor protection switch, that is already installed in the most cases, is sufficient.
According to IEC 947.4.2, mains filter and reactor are not required for the EMC conformity during operation because in all DOLD products the power semiconductors are jumpered by an integrated bypass contactor after the soft start.
A mains contactor is only required for single-phase controlled devices and for the model IR 9027 for technical reasons. All remaining products can be started directly online without contactor and only via a potential-free contact

Attention:

Bear in mind that the motor is still electrically connected to the mains, even if it does not rotate. Therefore, isolate the installation from the power supply using the assigned motor protection switch before any work on the motor or installation.

7. Driving issues

Geared motors with small power rating (up to 0.75 kW) and a very large reduction ratio may not show the desired starting behaviour because the motor works approximately at no load and starts even with small voltage applied.

Drives with a large centrifugal mass and/or strong counter-torque have a so called high-interia starting. Their starting time is longer than normal. This results in a higher heating of motor and equipment. This is critical and therefore the switching frequency must be reduced or a larger motor selected.

For pole-changing motors (e.g. acc. to Dahlander) the softstarter must be rated according to the higher power rating. To start the motor it is useful to adjust the soft coasting time to zero.

8. Example

Task:
Select a suited softstarter that perfectly meets the following requirements:

1. An existing installation is to be modified.
2. Three fan motors (centrifugal mass) with 1.5 kW each have to be simulateously reversed at an interval of 4 minutes.
3. So far, motor reversal was only allowed at standstill. Otherwise the mains and the contactor would be overloaded with too high currents.
4. Now, the coasting time is too long, that means a braking would be desirable.

For questions to the right answer please contact DOLD.

Solution

BA 9018 / 5.5 kW

Motor Braking Units

Safe braking of three-phase motors

The wish for more safety of industrial machines requires reliable braking devices. However, economic considerations often matter when it comes to their purchasing apart from the safety aspect. By quick stopping of dangerous machine parts braking devices prevent both industrial accidents and also damages to equipment. Therefore, accident prevention rules require them for some machinery and plants, e.g. in the wood and textile industries. Moreover, braking devices help to reduce cost by shortening the deceleration times of machines. Today, mainly three-phase asynchronous motors are used for drive engineering. They can be decelerated both mechanically and also electrically.

Mechanical brakes

The mechanical brake as the most simple and oldest braking device has still a right to exist up to the present day. It is always indispensable when an accidental movement of a de-energized motor must be safely prevented. Moreover it relieves the motor from the heat loss that arises during electrical braking. This advantage becomes particularly important for motors with high switching and braking frequency.

Disadvantages of mechanical braking methods include wearing and vulnerability to failures due to wear and tear as well as abrasion and noise.

Electrical braking

When it comes to electrical braking methods for three-phase asynchronous motors a distinction is made between braking by plugging and d. c. injection braking.

Braking by plugging

In former times, braking by plugging was the most common and most simple electrical braking method. It is initiated by interchanging two mains conductors of the stator winding. This changes the direction of the motor's rotating field and generates a torque working against the direction of rotation and decelerating the motor up to a dead stop. When the motor is not cut off on time by suited means such as a zero-speed switch or frequency relay it accelerates in the reverse direction after its dead stop.

Disadvantages of braking by plugging:

- Relatively high braking torque
- Inconvenient braking torque adjustment via resistors
- High power consumption
- Heavy stress to switching devices

Direct current injection braking

With respect to the losses arising in the rotor, the d. c. injection braking is the more advantageous type of electrical motor braking. For this, via 2 or 3 terminals, direct current is fed into the stator winding that is disconnected from the three-phase system. This causes a stationary field within the motor. The rotation of the rotor makes that an alternating voltage is induced in it. The current resulting from this causes a smooth and strong braking. In most cases, electronic motor braking devices generate the direct current by a thyristor phase-fired control (Fig. 1).
This method has the advantage that the direct voltage can be continuously

Fig. 1: Schematic diagram for a motor with electronic braking $\mathrm{K} 1=$ mains contactor; $\mathrm{K} 2=$ braking contactor
changed by time-shifting the control pulse for the thyristor. Then, the braking current results from the set direct voltage and the resistance of the stator winding through which the braking current flows. The possibility to adjust the braking voltage continuously enables a convenient adjustment of the braking force to the relevant application.
The duration of the braking process can be adjusted by a timer. The braking contactor must cut off the braking current when the motor has just stopped. This avoids an unnecessary thermal stress to the motor. As the stator winding heats up depending on the mode of operation and the winding resistance varies the braking time has to be frequently corrected on the motor braking device. This effect can be eliminated by a zero-speed switch. Independent of the set braking time, the braking contactor drops out when the zero-speed switch signals the motor's dead stop.

Advanced motors are equipped with automatic zero-speed monitors for which no additional sensors are required. Such an automatic zero-speed monitor cuts off the braking current at the dead stop of the motor after a short delay time (< 1 sec .). Additionally, an adjustable braking timer as a safety device is started when the braking process starts. When lapsed it stops the braking process unless the zero-speed monitor has already terminated the braking process.

To protect the power semiconductors against overtemperature also motor braking devices with thermal protection are available. With these devices the braking contactor drops out when the allowed temperature of the power semiconductor is execeeded.

There are two designs of electronic motor braking devices: Typically, devices for smaller power with braking currents up to approx. 25 A have a compact enclosed design. For these devices, the functional modules braking electronic, braking contactor and power part are typically accommodated in a plastic case for DIN rail mounting.

Such a compact design is not possible for motor braking devices for higher power ratings due to the high temperatures in the power section. They are either mounted on a carrier board as open-type assembly or built in a properly sized sheet metal housing.

Functional sequence

For the conventional type of d. c. injection braking the control system of the installation controls the functional sequence. In contrast to this, electronic motor braking devices have an integrated time program providing for the correct sequence of the switching operations. This ensures that mains and braking contactor do not close at the same time. Moreover, this allows a flexible applicability and a reliable function of the braking device. Typically, the function sequence with standard braking devices is as follows:

Once the motor is disconnected from the three-phase system, the braking is initiated after a delay. On the one hand, this braking delay time is used to allow a decay of induction voltages, that are still present after motor disconnection, to a value that is harmless to the power semiconductors. On the other hand, it is used to switch the braking contactor at zero crossing if possible. This considerably reduces contact wearing.

Engineering

To obtain an optimal braking torque the braking current I_{B} should be higher than the rated motor current by the factor 1.8 to 2 . This corresponds to the saturation current, i.e. the magnetic field required for braking reaches its maximum at this current intensity. Higher braking currents only result in a thermal motor overload. The allowed braking current has to be tested using an r.m.s. measuring instrument.

Apart from the braking current, also other criteria are essential for the selection of the correct motor braking device. The selection should be based on the documentation from the relevant manufacturer of the braking device. Selection recommendations included there refer to the max. braking current, duration and frequency of braking operations and to the method of connection of the motor to be decelerated.

To safely prevent thermal motor overload by too frequent braking it is recommended to equip them with thermal protection devices. Thermal motor protection relays are suitable for this. Comfortable motor braking devices have this thermistor motor protection already integrated.

Motor Braking Units

PTC thermistors specifically offered for motor protection are suited as temperature probes. The signal output contact of the thermal monitoring should arranged so that the motor is stopped for safety reasons when the control contact trips, but can not be restarted afterwards until the thermal data allow a restarting.

Softstarters extend the motor service life

To extend the service life of three-phase motors brake devices are often used in combination with softstarters. They allow a more economic design of the driving components and can also be retrofitted in existing installations like brake devices.

Apart from providing both control functions, softstarters with already integrated brake functionality also save a lot of wiring (see Fig. 2).

Fig. 2: Schematic diagram for softstart-brake combination

Features of electronic d. c. braking with phase-angle control:

- Continuous adjustment of the braking force and time to the machine's characteristic
- Soft start of the braking effect and thus avoidance of mechanical stresses to bearings, gears or V-belts
- No maintenance needed
- No mechanical wearing
- Easy installation (also later)
- Environmentally compatible

Fields of application

Two reasons require a quick stopping of rotating parts on machinery and plants by brake devices:

1) Prevent industrial accidents by emergency stop or safety braking. Accident prevention rules, e.g. those of the wood working (VBG 7j) and textile industries (VBG 7v) require the use of brake devices.
2) Reduce costs by shortening the coasting times of machines.

Moreover, motor brake devices are used:

- For deceleration of positioning drives
- For braking machines that would reach their resonance frequency when coasting without braking, e.g. shaking troughs
- For lifting and conveying equipment where a run over end positions must be prevented
- For reversal mills, centrifuges and the like

Power Electronics
POWERSWITCH
Solid-State Contactor
BF 9250, BH 9250

- According to IEC/EN 60 947-4-2, IEC/EN 60 947-4-3
- 1-, 2- and 3-pole models
- Load current up to 50 A
- For AC load up to 480 V
- Switching at zero crossing
- Protected by varistors
- As option temperature protection of the power semiconductors with monitoring output
- Mounting on DIN-rail
- As option with control input X1 with low current consumption e.g. to be controlled by a PLC
- As option up to 3 separate semiconductor contactors in one unit
- BF 9250: width $22.5 \mathrm{~mm}, 45 \mathrm{~mm}$ and 90 mm BH 9250: width $45 \mathrm{~mm}, 67.5 \mathrm{~mm}$ and 112.5 mm

Approvals and Markings

BF 9250, BF 9250/004

BF 9250/001, BH 9250/001

Circuit Diagrams

BF 9250.01

BF 9250.01/001

BF 9250.92/003

BF 9250.02

BF 9250.02/001

BF 9250.93/003

BF 9250.03

BF 9250.03/001

Terminal designation	Signal description
A1, A2, A3, A4, A5, A6, COM, X1	Control or operating voltage
18	Indicator output
11,12	NC contact
L1, L2, L3	Mains connections
T1, T2, T3	Load outputs
T1b, T2b	Load outputs

Circuit Diagrams

BF 9250.02/004

BF 9250.03/004

BH 9250.01/001

BH 9250.02/001

BH 9250.03/001

BH 9250.03/006

Technical Data

Input

BF 9250/001, BH 9250/001:
Operation voltage A1/A2:
Voltage tolerance:
Input current:
Control voltage X1/A2:
Making voltage:
Switch off voltage:
Start current:

Start up delay [ms]:
Release delay [ms]:

BF 9250/003:

Control voltage A1/A2:
Control voltage A3/A4:
Control voltage A5/A6:
Start up delay [ms]:
Release delay [ms]:

BF 9250/004:

Control voltage A1/COM:
Control voltage A2/COM:
Control voltage A3/COM:
Start up delay [ms]:
Release delay [ms]:

BF 9250:

Control voltage A1/A2:
Start up delay [ms]:
Release delay [ms]:

BH 9250/006:

Operation voltage A1+/A2:
Control voltage X1+/A2:
Control voltage X2+/A3:

DC 24 V
± 10 \%
35 mA
DC $3 \ldots 48 \mathrm{~V}$
DC 3 V
DC 2 V
$0,5 \mathrm{~mA}$ at DC $3 \ldots 10 \mathrm{~V}$
10 mA at DC $10 \ldots 48 \mathrm{~V}$
$\leq 2+1 / 2$ Periode
$\leq 1+1 / 2$ Periode

DC 24 V , control of T_{a}
DC 24 V , control of T_{b}
DC 24 V , control of T_{c}
$\leq 1+1 / 2$ Periode
$\leq 1+1 / 2$ Periode

DC 24 V , control of T_{a} DC 24 V , control of T_{b} DC 24 V , control of T_{c} $\leq 1+1 / 2$ Periode $\leq 1+1 / 2$ Periode

AC/DC 110 ... 230V, AC/DC 24 V
$\leq 3+1 / 2$ Periode
$\leq 35+1 / 2$ Periode

DC 24 V
DC 3 ... 48 V
DC 24 V

Output

Load output T1, T2, T3; $\mathrm{T}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}, \mathrm{T}_{\mathrm{c}}$
Load currents at 100 \% duty cycle ED, AC 51:

BF 9250 BH 9250	Ambient temperature	Device without heat sink	Device with small heat sink	Device with large heat sink
1-pole	$25^{\circ} \mathrm{C}$	13 A	30 A	55 A
$40^{\circ} \mathrm{C}$	10 A	25 A	50 A	
2-pole	$25^{\circ} \mathrm{C}$	7 A	$17,5 \mathrm{~A}$	28 A
	$40^{\circ} \mathrm{C}$	$6,5 \mathrm{~A}$	15 A	25 A
3-pole	$25^{\circ} \mathrm{C}$	6 A	14 A	20 A
	$40^{\circ} \mathrm{C}$	5 A	10 A	15 A

BH 9250.03/006:

Load output T1a, T2a, T3a
AC-51 3×3 A
Load output T1b, T2b
AC-51 2×1 A
Current reduction over $40^{\circ} \mathrm{C}$

BF 9250 BH 9250	Device wit- hout heat sink	Device with small heat sink	Device with large heat sink
1-pole	$0,2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0,4 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0,6 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
2-pole	$0,2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0,3 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0,4 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
3-pole	$0,2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0,2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0,3 \mathrm{~A} /{ }^{\circ} \mathrm{C}$

Min. load current:
Load voltage range:
Leakage current in off state
at nominal voltage U_{N} and
nominal frequency

(Tj=125 ${ }^{\circ} \mathrm{C}$, max.):	1.0 mA
at load voltage up to:	AC 480 V
Peak inverse voltage:	$\pm 1200 \mathrm{Vp}$

Technical Data

Short circuit current

at $\mathrm{t}=10 \mathrm{~ms}$
BF 9250.01; .02; .92;
BH 9250.01; . 02:
BF 9250.03; .93;
BH 9250.03:
Power dissipation:

600 A

400 A
$\mathrm{P}=1.2[\mathrm{~V}] \times \mathrm{l}$ eff. $[\mathrm{A}] / \mathrm{k}[\mathrm{W}]$
with k as formfactor and
$\mathrm{k}=1.1$ for sinusoidal current

Semiconductor fuse

			Semiconductor fuse		
$\begin{array}{\|l\|} \hline \text { BF } 9250 \\ \text { BH } 9250 \end{array}$	I_{N}	load limit integral of the semiconductor	Type	Article-No.	Brand
1-pole	$\begin{aligned} & 10 \mathrm{~A} \\ & 25 \mathrm{~A} \\ & 50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1800 \mathrm{~A}^{2} \mathrm{~s} \\ & 1800 \mathrm{~A}^{2} \mathrm{~s} \\ & 1800 \mathrm{~A}^{2} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { fuse } 10 \times 38 \\ & \text { fuse } 10 \times 38 \\ & \mathrm{NH}-00 \end{aligned}$	$\begin{aligned} & 6003434.16 \\ & 6003434.30 \\ & 2020920.63 \end{aligned}$	$\begin{aligned} & \text { SIBA } \\ & \text { SIBA } \\ & \text { SIBA } \end{aligned}$
2-pole	2x6,5 A 2x15 A 2×25 A	$\begin{aligned} & 1800 A^{2} s \\ & 1800 A^{2} S \\ & 1800 A^{2} S \end{aligned}$	fuse 10×38 fuse 10×38 fuse 10×38	$\begin{aligned} & 6003434.10 \\ & 6003434.20 \\ & 6003434.30 \end{aligned}$	$\begin{aligned} & \text { SIBA } \\ & \text { SIBA } \\ & \text { SIBA } \end{aligned}$
3-pole	3×5 A $3 \times 10 \mathrm{~A}$ 3×15 A	$800 \mathrm{~A}^{2} \mathrm{~s}$ 800 A $^{2} \mathrm{~s}$ $800 A^{2}$ s	fuse 10×38 fuse 10×38 fuse 10×38	$\begin{aligned} & \hline 6003434.8 \\ & 6003434.16 \\ & 6003434.20 \end{aligned}$	$\begin{aligned} & \text { SIBA } \\ & \text { SIBA } \\ & \text { SIBA } \end{aligned}$

Varistor voltage:
AC 510 V

Semiconductor Monitoring Output

Output (Terminal 18):
switched auxiliary voltage:
Switching capacity:
Residual voltage:
Output (NC contact 11, 12) Switching capacity:

General Data

Fitting position:

Operating mode:
Temperature range:
Operation:

Storage temperature:

Clearance and creepage

distances

rated impulse voltage /
pollution degree
EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
transistor, plus switching
DC 24 V
100 mA , short circuit proof
typ. 0.6 V

AC $240 \mathrm{~V}^{*} / 2.0 \mathrm{~A} \cos \varphi=1$
$\mathrm{AC} 240 \mathrm{~V}^{\star} / 1.0 \mathrm{~A} \cos \varphi=0.6$ inductive DC $24 \mathrm{~V} / 1.0 \mathrm{~A}$
*) max. AC 150 V at variant /004
cooling ribs vertically
Continuous operation
$0 . . .40^{\circ} \mathrm{C}$
max. $60^{\circ} \mathrm{C}$ (with current derating factor see table)
$-20 \ldots+80^{\circ} \mathrm{C}$
$4 \mathrm{kV} / 3$
IEC 60 664-1
IEC/EN 61 000-6-4, IEC/EN 61 000-6-1 8 kVair / 6 kV contactIEC/EN 61 000-4-2 $10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3 $2 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

1 kV	IEC/EN 61 000-4-5
2 kV	IEC/EN 61 000-4-5
10 V	IEC/EN 61 000-4-6
Limit value class A	IEC/EN 60 947-4-3
A higher suppression class can be	
reached by connecting capacitors of	
$0.47 \mathrm{HF} / 600 \mathrm{~V}$ AC across the phases	
or across phase and neutral.	

Technical Data

Insulation voltages

Input to Output: Input to semiconductor
monitoring output (NC contact) Input to heat sink: Output to Output: Output to heat sink:
Degree of protection Housing:
Terminals:
Vibration resistance:

Climate reseistance:

Terminal designation
Wire connection:
Load terminals:
Control terminals and indicator outputs BF 9250:

BH 9250:

Wire fixing

Load terminals:
Control terminals: BF 9250, BF 9250/001, BF 9250/003, BF 9250/004: BH 9250:

Mounting:

Weight

BF 9250

Width $22.5 \mathrm{~mm}:$	350 g
Width $45 \mathrm{~mm}:$	580 g
Width $90 \mathrm{~mm}:$	1050 g
BH 9250	394 g
Width $45 \mathrm{~mm}:$	638 g
Width $67.5 \mathrm{~mm}:$	1094 g
Width $112.5 \mathrm{~mm}:$	

Width x heigth x depth:
 BF 9250:

BH 9250:
2.5 kV
2.0 kV
2.5 kV
2.5 kV
2.5 kV

IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Amplitude $0,35 \mathrm{~mm}$
Frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
0 / 060 / 04
IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
$1 \times 10 \mathrm{~mm}^{2}$ solid
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
$1 \times 0.75 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
DIN 46 228-1/-2/-3/-4
$1 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
DIN 46 228-1/-2/-3/-4 or
$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferrueld
DIN 46 228-1/-2/-3
Terminal screws M 4
Box terminal with wire protection
cage clamp terminals "Push-In"
Plus-minus terminal screws M3,5
box terminals with wire protection
DIN rail
IEC/EN 60715
$22.5 \times 85 \times 120 \mathrm{~mm}$
$45 \times 85 \times 120 \mathrm{~mm}$
$90 \times 85 \times 120 \mathrm{~mm}$
$45 \times 85 \times 120 \mathrm{~mm}$
$67,5 \times 85 \times 120 \mathrm{~mm}$
$112.5 \times 85 \times 120 \mathrm{~mm}$

UL-Data according to UL508

Input

Wire connection: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only
BF 9250:
AWG 28-14 Sol/Str
BF 9250/001:
AWG 24-14 Sol/Str
BH 9250:
AWG 20-12 Sol, 20-14 Str. Torque 0.8 Nm
Load circuit
Fixed screw terminal: $\quad 75^{\circ} \mathrm{C}$ copper conductors only AWG 18-8 Sol Torque 0.8 Nm or AWG 18-10 Str Torque 0.8 Nm (only possible at variants up to 30 A)
Temperature range:
Frequency range:
Pollution degree:
$0 . . .40^{\circ} \mathrm{C}$
$50 / 60 \mathrm{~Hz}$
2

In the final circuit an overvoltage protector R/CSPD (VZCA2/8) with min. 480 V AC, $50 / 60 \mathrm{~Hz}$, VPR=2500V, Type 3 has to be installed.

 Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Types

BF 9250.01/001 DC 24 V AC $24 \ldots 480 \mathrm{~V} 50 / 60 \mathrm{~Hz} 10 \mathrm{~A}$
Article number: 0050515

- 1-pole
- Control input X1:

DC 3 ... 48 V

- Auxiliary voltage:

DC 24 V

- Load voltage:

AC 24 ... 480 V

- Load current:

10 A

- With signal output
- Width: $\quad 22,5 \mathrm{~mm}$

BF 9250.03/001 DC 24 V AC $24 \ldots 480 \mathrm{~V} 50 / 60 \mathrm{~Hz} 3 \times 10 \mathrm{~A}$
Article number: 0050520

- 3-pole
- Control input X1: DC $3 \ldots 48 \mathrm{~V}$
- Auxiliary voltage: DC 24 V
- Load voltage: AC 24 ... 480 V
- Load current: $3 \times 10 \mathrm{~A}$
- With signal output
- Width:

45 mm

Variants

BF 9250.0_:
BH 9250._ /001:
Without low current input X1
BF 9250.92/003,
BF 9250.93/003:

BF 9250.02/004,
BF 9250.03/004: With bigger diameter for control wires

2 or 3 power semiconductor controlled by a separate input with galvanic isolation, without temperature monitoring of the semiconductors

2 or 3 power semidconductor controlled by a separate input with common ground with temperature monitoring of the semiconductors signal output not latching without LED display of ϑ.

Odering example for variants

Installation

Recommended distance:
upper / lower side to cable duct: 20 mm
Distance on left and right: 10 mm ; with max. load current and 100 \% duty cycle

Application Examples

Width mm	22,5	45	90		22,5	45	90		22,5	45	90
$\mathrm{I}_{\mathrm{L}} /$ phase	10 A	25 A	50 A		10 A	25 A	50 A		10 A	25 A	50 A

BF 9250._ _/001

Width mm	22,5	45	90	22,5	45	90		22,5	45	90	
$\mathrm{I}_{\mathrm{L}} /$ phase	10 A	25 A	50 A		$6,5 \mathrm{~A}$	15 A	25 A		5 A	10 A	15 A

BF 9250._ _/001

Application Examples

BF 9250.03
3-phase load, controlled by a 3-pole semiconductor contactor with AC/DC 110-230 V control voltage.

BF 9250.03/004

3 semiconductor contactors in one housing control 3 different loads

Power Electronics
POWERSWITCH
Solid-State Contactor
BF 9250/_ _ 8

- According to IEC/EN 60 947-4-2, IEC/EN 60 947-4-3
- 1-, 2- and 3-pole versions
- Load current up to 50 A at $\mathrm{T}_{U}=40^{\circ} \mathrm{C}$
- For AC load up to 530 V
- Switching at zero crossing, optionally immediate switching
- Protected by varistors
- Mounting on DIN-rail
- As option with high $\mathrm{I}^{2} \mathrm{t}$ of the semiconductor for high switching current (variant /1_8)
- Widths: $22.5 \mathrm{~mm}, 45 \mathrm{~mm}$ and 90 mm

Function Diagram

Block Diagram

Approvals and Markings

Applications

Fast and noiseless switching of:

- heating elements
- motors
- valves
- lighting

Indicators

LED green:
on, when voltage on A1/A2

Circuit Diagrams

BF 9250.91/008 (1-pole)

BF 9250.92/008 (2-pole)

BF 9250.93/008 (3-pole)

Connection Terminals

Terminal designation	Signal description
A1 (+), A2	Control or operating voltage
L1, L2, L3	Mains connections
T1, T2, T3	Load output

Technical Data

Input:

Control voltage A1/A2: Control voltage range:	DC 24 V
1-pole:	DC $4 \ldots 32 \mathrm{~V}$
2-pole:	DC $7 \ldots 32 \mathrm{~V}$
3-pole:	DC $9 \ldots 32 \mathrm{~V}$
Start up delay [ms]:	$\leq 1+1 / 2$ period *)
Release delay [ms]:	(1 $+1 / 2$ period *)
	*) for variant with immediate switching only

Output

Load output T1, T2, T3
Load currents at 100 \% duty cycle:

		Width		
BF 9250/008	Ambient temperature	22.5 mm	45 mm	90 mm
	$25^{\circ} \mathrm{C}$	13 A	30 A	55 A
	$40^{\circ} \mathrm{C}$	10 A	25 A	50 A
2-pole	$25^{\circ} \mathrm{C}$	7 A	17.5 A	28 A
	$40^{\circ} \mathrm{C}$	6.5 A	15 A	25 A
3-pole	$25^{\circ} \mathrm{C}$	6 A	14 A	20 A
	$40^{\circ} \mathrm{C}$	5 A	10 A	15 A

Current reduction over $40^{\circ} \mathrm{C}$

BF 9250/008	Device without heat sink	Device with small heat sink	Device with large heat sink
1-pole	$0.2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0.4 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0.6 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
2-pole	$0.2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0.3 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0.4 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
3-pole	$0.2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0.2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$0.3 \mathrm{~A} /{ }^{\circ} \mathrm{C}$

Min. load current:
Load voltage L1, L2, L3:
Load voltage range::
Frequency range:
Leakage current
in off state: approx. 1.0 mA
Peak reverse voltage: $\pm 1200 \mathrm{Vp}$
Short circuit current
at $\mathrm{t}=10 \mathrm{~ms}$
BF 9250.91, BF 9250.92: 600 A
BF 9250.93:
Power dissipation:

Semiconductor fuse

			Semiconductor fuse		
	I_{N}	Load limit integral of the semiconductor*)	Type	Art.-No.	Brand
1-pole devices	10 A	$1800 \mathrm{~A}^{2} \mathrm{~s}$	fuse 10×38	6003434.16	SIBA
	25 A			6003434.30	
	50 A		NH-00	2020920.63	
2-pole devices	$2 \times 6.5 \mathrm{~A}$	$1800 \mathrm{~A}^{2} \mathrm{~s}$	fuse 10×38	6003434.10	
	$2 \times 15 \mathrm{~A}$			6003434.20	
	$2 \times 25 \mathrm{~A}$			6003434.30	
3-pole devices	$3 \times 5 \mathrm{~A}$	$800 \mathrm{~A}^{2} \mathrm{~s}$	fuse 10×38	6003434.8	
	$3 \times 10 \mathrm{~A}$			6003434.16	
	$3 \times 15 \mathrm{~A}$			6003434.20	

${ }^{*}$) up to $18000 \mathrm{~A}^{2} \mathrm{~s}$: on request

Varistor voltage:
AC 510 V

Technical Data

General Data

Mounting position:
Operating mode:
Temperature range:
max. temperature:
Storage temperature:
Clearance and creepage distances
rated impulse voltage /
pollution degree
EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
or across phase and neutral. Insulation voltages
Input to Output:
Input to semiconductor
monitoring output
(NC contact)
Input to heat sink:
Output to Output:
Degree of protection
Housing:
Terminals:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Load terminals:

Control terminals:

Wire fixing
Load terminals:
Control terminals:
Mounting:
Weight
$\begin{array}{lr}\text { Width } 22.5 \mathrm{~mm}: & 350 \mathrm{~g} \\ \text { Width } & 45 \mathrm{~mm}: \\ \text { W80 }\end{array}$
Width 90 mm :
1050 g
Dimensions
0 ... $40^{\circ} \mathrm{C}$
see table

4 kV / 3

1 kV

2 kV
10 V
2.5 kV
2.0 kV
2.5 kV
2.5 kV
2.5 kV

IP 20

$0 / 060$ / 04

EN 50005

DIN rail
cooling ribs vertically
Continuous operation
$60^{\circ} \mathrm{C}$ (with current derating factor)
$-20 \ldots+80^{\circ} \mathrm{C}$

IEC 60 664-1
IEC/EN 61 000-6-4, IEC/EN 61 000-6-1 8 kVair / 6 kV contactIEC/EN 61 000-4-2 $10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3 2 kV IEC/EN 61 000-4-4

IEC/EN 61 000-4-5

Limit value class A IEC/EN 60 947-4-3
A higher suppression class can be reached by connecting capacitors of $0.47 \mu \mathrm{~F} / 600 \mathrm{~V}$ AC across the phases

IP 40 IEC/EN 60529
IEC/EN 60529
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
IEC/EN 60 068-1
DIN 46 228-1/-2/-3/-4
$1 \times 10 \mathrm{~mm}^{2}$ solid
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
$1 \times 0.75 \mathrm{~mm}^{2}$ stranded ferruled (isolated) DIN 46 228-1/-2/-3/-4
$1 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3
Terminal screws M 4
Box terminal with wire protection
cage clamp terminals
IEC/EN 60715

Width \mathbf{x} heigth x depth:

Dependent of contacts and load current
(see table load current):

[^1]
UL-Data according to UL508

Input

Wire connection
BF 9250/008:

Load circuit
Fixed screw terminal: $\quad 75^{\circ} \mathrm{C}$ copper conductors only

Temperature range:
Frequency range:
Pollution degree:

AWG 18-8 Sol Torque 0.8 Nm or AWG 18-10 Str Torque 0.8 Nm (only possible at variants up to 30 A)
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 24-14 Sol/Str
$0 . . .40^{\circ} \mathrm{C}$
$50 / 60 \mathrm{~Hz}$
2

In the final circuit an overvoltage protector R/CSPD (VZCA2/8) with min. 480 V AC, $50 / 60 \mathrm{~Hz}$, VPR=2500V, Type 3 has to be installed.

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type	
BF 9250.91/008 DC 24 V Article number: - 1-pole - Control voltage range: - Load voltage range: - Load voltage: - with indicator output - Width:	$\begin{aligned} & \text { AC } 480 \mathrm{~V} 50 / 60 \mathrm{~Hz} \quad 10 \mathrm{~A} \\ & 0056823 \\ & \text { DC } 4 \ldots 32 \mathrm{~V} \\ & \text { AC } 24 \ldots 530 \mathrm{~V} \\ & 10 \mathrm{~A}\left(\text { bei } \mathrm{T}_{\mathrm{U}}=40^{\circ} \mathrm{C}\right) \\ & 22.5 \mathrm{~mm} \end{aligned}$

Installation

Recommended distance:
upper / lower side to cable duct: 20 mm
distance on left and right: 10 mm ; with max. load current and 100 \% duty cycle

Application Examples

Single phase load switched by 1-pole semiconductor contactor controlled from PLC or Temperature controller output.

Width mm	22.5	45	90
$\mathrm{I}_{\mathrm{L}} /$ phase	10 A	25 A	50 A

3-phase system, 2 phases controlled

3-phase load, switched by 2 single-pole semiconductor contactors (left side) or by 12 -pole semiconductor contactor (right side)

22.5	45	90
10 A	25 A	50 A

22.5	45	90
6.5 A	15 A	25 A

POWERSWITCH
Semiconductor Contactor With Analogue Input
For Pulsed Output BF 9250/0_2
DOLD 発

Block Diagram

Circuit Diagrams

Connection Terminals	
Terminal Designation Signal Designation A1 (+) + / L A2 - / N X1 Control input L1, N Mains connection T1, N Load output	

- Analogue controller for accurate process temperature control
- Burst firing control of heaters
- Control input optional with DC $0 \ldots 10 \mathrm{~V}$, DC $4 \ldots 20 \mathrm{~mA}, 0 \ldots 10 \mathrm{k} \Omega$
- Reverse action operation possible
- Rated operational voltage range up to 480 V
- Rated operational current is up to AC 50 A
- Zero cross switching
- Protected by varistors
- Temperature protection of the power semiconductors
- LED indications for supply, output status and alarm status
- Alarm indication on mains synchronisation failure
- Alarm indication on control input failure
- Alarm indication on over temperature of power semiconductors
- DIN-rail mountable
- BF 9250/0_2 to 10 A: Width 22.5 mm BF 9250/0_2 to 25 A: Width 45 mm BF 9250/0_2 to 50 A: Width 90 mm

Approvals and Markings

Applications

- Analogue control for precise temperatur control
- Fast and noiseless switching of heating elements

Indicators

Normal operation

Green LED:
Yellow LED:
Red LED:

ON

ON according to output status
OFF

Mains sychronisation failure alarm

Green LED:

Flashing
Yellow LED:
OFF
Red LED:
Flashing
(This alarm status is not latched)
Control input failure
Green LED: ON
Yellow LED: OFF
Red LED: Flashing
(This alarm status is not latched)

Over temperature of power semiconductors alarm

Green LED: ON
Yellow LED: OFF
Red LED: ON
(This alarm status is latched. Supply on A1+/A2 has to be switched off and back on after a short time to reset this status)

Technical Data	
Input	
Supply voltage $\mathbf{U}_{\mathbf{H}}$ A1/A2:	AC/DC 24 V
Supply current:	< 26 mA at DC 24 V
Control Input	
Current controlled input	
Control current range:	DC 0 ... 20 mA or DC $4 \ldots 20 \mathrm{~mA}$
Allowable input current:	< 35 mA
Over current protection:	YES
Alarm for over current:	YES
Reverse polarity protection:	YES
Voltage drop:	1.02 V at 20 mA
Voltage controlled input	
Control voltage range:	DC $0 \ldots 5 \mathrm{~V}$ or DC $0 \ldots 10 \mathrm{~V}$
Control input current:	$<0.01 \mathrm{~mA}$ at DC 10 V
Potentiometer controlled input	
Potentiometer value:	$10 \mathrm{k} \Omega \pm 10$ \%
Control accuracy	
Range:	$0 . .100 \%$
Step:	1.5625 \%
Output	
Nominal load voltage:	$\begin{aligned} & \text { AC } 24 \ldots 115 \mathrm{~V} \text {; AC } 110 \ldots 240 \mathrm{~V} \text { or } \\ & \text { AC } 230 \ldots 480 \mathrm{~V} \end{aligned}$
Load current I_{L} :	AC $10 \mathrm{~A}, 25 \mathrm{~A}, 50 \mathrm{~A}$
Minimum operational current:	AC 40 mA
Operating mode:	Continuous
Current reduction over $40^{\circ} \mathrm{C}$	
$\mathrm{I}_{\mathrm{L}} \mathrm{AC} 10 \mathrm{~A}$:	$0.2 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{L}} \mathrm{AC} 25 \mathrm{~A}$:	$0.4 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{L} \mathrm{AC} 50 \mathrm{~A}$:	0.6 A / ${ }^{\circ} \mathrm{C}$
Freqency range:	$45 \ldots 65 \mathrm{~Hz}$
Varistor voltage:	AC 510 V
Load types:	Resistive
Power loss:	$1.2(\mathrm{~V}) \times \mathrm{l}$ L (A$)$ approx.
Average power output:	$0 \ldots 100 \%$
Output power resolution	
at BF 9250/042:	5 \%
Zero crossing detection:	YES
Off state leakage current at rated voltage and frequency:	$\begin{aligned} & 1.0 \mathrm{~mA} \\ & \left(\mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \text { max. }\right) \end{aligned}$
I^{2} t for fusing $\mathrm{t}=1$ to 10 ms I, AC $10 \mathrm{~A}, 25 \mathrm{~A}$:	$800 \mathrm{~A}^{2} \mathrm{~S}$
$\mathrm{I}_{L} \mathrm{AC} 50 \mathrm{~A}$:	$1800 \mathrm{~A}^{2} \mathrm{~S}$
Peak inverse voltage:	$\pm 1200 \mathrm{~V}_{\mathrm{P}}$

Note: Higher current capacilities on request

Installation

Recommended distance with max. load current and 100 \% duty cycle upper / lower side

to cable duct:	20 mm
left / right:	10 mm

Technical Data

General Data

Maximum humidity:
Operating temperature:
Maximum temperature:
Storage temperature:

Cooling:

Junction temperature:
Rated withstand voltage
input to output:
Degree of protection
Housing:
Terminals:
Mounting:
Wire fixing
Wire connection
Load terminals:
Control terminals:

Load terminals:
Control termials:
Fixing torque:
Weight
BF 9250/0_2 to 10 A: $\quad 350 \mathrm{~g}$
BF 9250/0_2 to 25 A: $\quad 580 \mathrm{~g}$
BF 9250/0_2 to 50 A: 1094 g

Dimensions

Width x height x depth

BF 9250/0_2 to 10 A: Width	$22,5 \times 85 \times 120 \mathrm{~mm}$
BF 9250/0_2 to 25 A: Width	$45 \times 85 \times 120 \mathrm{~mm}$
BF 9250/0_2 to 50 A: Width	$90 \times 85 \times 120 \mathrm{~mm}$

UL-Data according to UL508

Input
Wire connection: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 24-14 Sol/Str

Control input

Current input:
Voltage input:
Potentiometer input:
Load circuit
Fixed screw terminal:

Temperature range:

Frequency range:
Pollution degree:
In the final circuit an overvoltage protector R/CSPD (VZCA2/8) with min. 480 V AC, $50 / 60 \mathrm{~Hz}$, VPR=2500V, Type 3 has to be installed.

Into
Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BF 9250.91/042 $U_{H} A C / D C 24 V$ DC $0 \ldots 10 \mathrm{~V}$ AC $230 \ldots 480 \mathrm{~V}$ AC 10 A Article number: 0059168

- 1-pole
- Control input:

DC 0 ... 10 V

- Auxiliary voltage: AC/DC 24 V
- Load voltage: AC 230 ... 480
- Load current: AC 10 A
- Width: 22.5 mm

Variants

BF 9250/002:
Output control with fixed period of 64 cycles, pulse-space ratio according to input signal
BF 9250/042: Self optimising, to achieve as short as possible control periods, suitable for infrared lamps

Characteristics

Variant BF 9250/002

Variant BF 9250/042

Application Examples

POWERSWITCH
Solid-State Relay / - Contactor For Resistive Load PK 9260

Your Advantages

- High switching frequency and long life
- Space saving, only 22.5 mm width
- To be mounted on cooling surface with only 2 screws
- With heat sink for DIN-rail mounting
- Silent
- Vibration- and shock resistance

Features

- AC solid-state relay / -contactor
- PK 9260/_ _ _ according to IEC/EN 62314

PK 9260/_ _ _ _ according to IEC/EN 60947-4-2 and -4-3

- Load current up to 88 A, AC-51
- Switching at zero crossing for resistive loads
- 2 anti-parallel thyristors
- DCB technology (direct bonding method) for excellent heat transmission properties
- As option with:
- M4 flat terminal or
- M5 screw terminal for cable lug
- LED status indicator
- Peak reverse voltage up to $\pm 1600 \mathrm{~V}$
- Insulation voltage 4000 V
- As option with heat sink, for DIN rail mounting

Approvals and Markings

Applications

Solid-state relays switching at zero crossing:

For frequent no-wear and no-noise switching of:

- heating systems
- cooling systems
- valves
- lighting systems

The solid-state relay switches at zero crossing and is suitable for many applications e.g. extrusion machines for plastic and rubber, packaging machines, solder lines, machines in food industry.

Function

The solid-state relay PK 9260 is designed with 2 anti-parallel connected thyristors switching at zero crossing for resistive loads (e.g. heating systems). When connecting the control voltage the output of the solid-state relay is activated at the next zero crossing of the sinusoidal voltage. When disconnecting the control voltage the output is switched off at the next zero crossing of the load current.
The LED shows the state of the control input.

Operation Notes

EMC disturbance during operation has to be reduced by corresponding measures and filters. If several solid-state relays are mounted together sufficient cooling and ventilation has to be provided.

Control Circuit

$\left.\begin{array}{|l|c|c|c|}\hline & \text { DC } & \text { AC/DC } & \text { AC } \\ \text { Control voltage range [V]: } & 4 \ldots 32 & 18 \ldots 30\end{array}\right]$.
*) $1 / 2$ cycle delay only when switching at 0 -crossing, at instantaneous switching the delay $=0$

Output								
Load voltage AC [V]:	$24 . .230$			$48 . . .460$		$48 . . .600$		
Peak reverse voltage [V]:	650			1200		1600		
Frequency range [Hz]:	$47 \ldots 63$							
Solid-state relays. heat sink see table Load current $I_{\text {nenn }}[A]$ / AC-51:	24		32	48	48*	72	72*	88
Solid-state contactor at $\mathrm{T}_{\mathrm{U}}=40^{\circ} \mathrm{C}$: Designation heat sink: Load current $I_{\text {nenn }}[A] / A C-51$:	$\begin{gathered} / 03 \\ 10 \end{gathered}$	$\begin{gathered} / 04 \\ 20 \end{gathered}$		$\begin{gathered} / 05 \\ 40 \end{gathered}$		$\begin{aligned} & / 06 \\ & 60 \end{aligned}$	$\begin{gathered} / 06 \\ 60 \end{gathered}$	
Current reduction above $\mathrm{T}_{U}=>40^{\circ} \mathrm{C}\left[\mathrm{A} /{ }^{\circ} \mathrm{C}\right]$	0,3	0,4		0,6		0,8	0,8	
Max. overload current [A]. $\mathrm{t}=10 \mathrm{~ms}$:	≤ 350	≤ 400	≤ 400	≤ 620	$\leq 1300^{*}$	≤ 1050	≤ 1150	≤ 1150
Load limit integral $\mathrm{I}^{2} \mathrm{t}\left[\mathrm{A}^{2} \mathrm{~s}\right]$:	612	800	800	1920	8500*	5500	6600	6600
Leakage current in off state [mA]								
Min. current [mA]								
Forward voltage [V] at at nominal current:	1,1	1,2	1,2	1,2	1,1	1,2	1,2	1,2
Off-state voltage [V/ $/ \mathrm{s}$]:	500	500	1000	1000	1000	1000	1000	1000
Rate of rise of current [$\mathrm{A} / \mu \mathrm{s}$]:	150	150	100	150	150	150	150	150

${ }^{*}$) at variant $/ 1_{--}$: High $I^{2} t$ value

Thermal Data - Solid-State Relays -

Solid-state relays without heat sink Load current $I_{\text {nenn }}[A]$ / AC-51:	24	32	48	48*	72	72*	88
Thermal resistance Junction ambient [K/W]:	10						
Thermal resistance Junction housing [K/W]:	0,55	0,48	0,36	0,25	0,35	0,25	0,25
Junction temperature [${ }^{\circ} \mathrm{C}$]:	≤ 125						

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current must be dissipated by a suitable heat sink. It is imperative that the junction temperature of the semiconductor is maintained for all potential environmental temperatures of under $125^{\circ} \mathrm{C}$. For this reason, it is important to keep the thermal resistance between the base plate of the solid-state relay and the heat sink to a minimum.
To protect the solid-state relay effectively from excess heating, a thermally conducting paste or a graphit gasket (see Accessories) should be applied before installation to the base plate of the heat sink between semiconductor relay and heat sink.
From the table, select a suitable heat sink with the next lowest thermal resistance. Thus, it is ensured that the maximum junction temperature of $125^{\circ} \mathrm{C}$ is not exceeded. The load current in relation to the environmental temperature can be seen from the table.
a)

Load current (A)
24.0
21.6
19.2
16.8
14.4
12.0
9.6
7.2
4.8
2.4

PK 926024 A Thermal resistance (K/W)

Thermal resistance (K/W)					
3.6	3.2	2.8	2.4	2.0	1.6
4.1	3.7	3.2	2.8	2.3	1.9
4.8	4.3	3.8	3.3	2.8	2.2
5.5	5.0	4.5	3.9	3.3	2.7
7.0	6.3	5.5	4.8	4.1	3.4
8.5	7.8	6.9	6.0	5.2	4.3
-	-	9.0	7.9	6.8	5.6
-	-	-	-	9.5	7.9
-	-	-	-	-	-
-	-	-	-	-	-
$\mathbf{0 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
Ambient temperature (${ }^{\circ} \mathbf{C}$)					

Selection of a Heat Sink

b)

Load current (A)	PK 9260 32 A Thermal resistance (K/W)					
$\mathbf{3 2 . 0}$	2.0	1.9	1.6	1.3	1.1	0.8
$\mathbf{2 8 . 8}$	2.5	2.2	1.9	1.6	1.3	1.0
$\mathbf{2 5 . 6}$	3.0	2.7	2.3	2.0	1.6	1.3
$\mathbf{2 2 . 4}$	3.7	3.3	2.8	2.4	2.0	1.6
$\mathbf{1 9 . 2}$	4.5	4.0	3.5	3.1	2.6	2.1
$\mathbf{1 6 . 0}$	5.8	5.2	4.5	3.9	3.3	2.7
$\mathbf{1 2 . 8}$	7.6	6.8	6.1	5.3	4.5	3.7
$\mathbf{9 . 6}$	-	9.7	8.6	7.5	6.4	5.3
$\mathbf{6 . 4}$	-	-	-	-	-	8.5
$\mathbf{3 . 2}$	-	-	-	-	-	-
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C} \mathbf{~) ~}$					

d)

$\begin{aligned} & \text { Load } \\ & \text { current }(\mathrm{A}) \end{aligned}$	PH 926072 A Thermal resistance (K/W)					
72.0	0.7	0.6	0.5	0.4	0.3	-
64.8	0.9	0.8	0.7	0.5	0.4	0.3
57.6	1.1	1.0	0.8	0.7	0.5	0.4
50.4	1.5	1.3	1.1	0.9	0.7	0.5
43.2	1.9	1.6	1.4	1.2	1.0	0.7
36.0	2.4	2.2	1.9	1.6	1.3	1.1
28.8	3.3	3.0	2.6	2.2	1.9	1.5
21.6	4.8	4.3	3.8	3.3	2.8	2.3
14.4	7.8	7.0	6.2	5.5	4.7	3.9
7.2	-	-	-	-	-	8.6
	20	30	40	50	60	70
	Ambient temperature (${ }^{\circ} \mathrm{C}$)					

e)

Load current (A)	PK 9260 88 A Thermal resistance (K/W)					
$\mathbf{8 8 . 0}$	0.6	0.5	0.4	0.3	-	-
$\mathbf{7 9 . 2}$	0.7	0.6	0.5	0.4	0.3	-
$\mathbf{7 0 . 4}$	0.9	0.8	0.7	0.6	0.4	0.3
$\mathbf{6 1 . 6}$	1.2	1.0	0.9	0.7	0.6	0.4
$\mathbf{5 2 . 8}$	1.5	1.3	1.1	1.0	0.8	0.6
$\mathbf{4 4 . 0}$	2.0	1.8	1.5	1.3	1.1	0.9
$\mathbf{3 5 . 2}$	2.7	2.4	2.1	1.8	1.5	1.2
$\mathbf{2 6 . 4}$	3.9	3.5	3.1	2.7	2.3	1.9
$\mathbf{1 7 . 6}$	6.3	5.7	5.0	4.4	3.8	3.1
$\mathbf{8 . 8}$	-	-	-	9.7	8.3	$\mathbf{7 . 0}$
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C} \mathbf{~) ~}$					

Solid-State Contactor

Solid-state with optimised heat sink

We recommend the following combination of solid-state relay and heatsink depending on the load current and an ambient temperature of $40^{\circ} \mathrm{C}$.

If the solid-state relays are used at ambient temperature above $40^{\circ} \mathrm{C}$ the load current has to be reduced according to the current reduction ($\mathrm{A} /{ }^{\circ} \mathrm{C}$ see table).

Example:
Operation at $\mathrm{T}_{\mathrm{U}}=45^{\circ} \mathrm{C}$; heat sink for 10 A with $0.3 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Current reduction: $\quad 5^{\circ} \mathrm{C} \times 0.3 \mathrm{~A} /{ }^{\circ} \mathrm{C}=1.5 \mathrm{~A}$
Max. load current: $\quad 10 \mathrm{~A}-1.5 \mathrm{~A}=8.5 \mathrm{~A}$

General Technical Data

Operating mode:

Temperature range operation: storage:
Relative air humidity:
Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC:
Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltages
Control circuit between A1 / A2: 1 kV IEC/EN 61 000-4-5
between output and ground: 2 kV IEC/EN 61 000-4-5
HF-wire guided Interference suppression:
Degree of protection:
Vibration resistance:

Housing material:

Base plate:
Mounting screws:
Mounting torque:
Connections load circuit /__ 0: Mounting screws M4 Pozidrive 1 PT
Mounting torque:
Wire cross section:
10 V
Limit value class A IEC/EN 60 947-4-3
IP 10
Amplitude 0.35 mm
Frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60-068-2-6
PBT/PC flame resistant; UL 94 V0
Aluminum, copper nickle-plated
M4 x 20 mm
2.5 Nm
2.5 Nm
$2 \times 1.5 \ldots 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$ solid oder
$2 \times 1.0 \ldots 2.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
$2 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$ stranded wire with sleeve $1 \times 10 \mathrm{~mm}^{2}$ stranded wire with sleeve
Connections load circuit /__ 1: Mounting screws M5
Mounting torque: $\quad 2.5 \mathrm{Nm}$
cable lug (DIN 46234): $\quad 5-2.5 ; 5-6 ; 5-10 ; 5-16 ; 5-25$
Connections control circuit:
Mounting torque:
Wire cross section:

Nominal insulation voltage

Control circuit - load circuit:
Load circuit - base plate:
Overvoltage category:
Weight
without heat sink:
with heat sink
Load current
10 A :
20 A :
40 A :
Mounting screws M3 Pozidrive 2 PT
0.6 Nm
$1 \times 0.5 \ldots 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 0.5 \ldots 1.0 \mathrm{~mm}^{2}$ solid or
$1 \times 0.5 \ldots 2.5 \mathrm{~mm}^{2}$ stranded wire with sleeve

4 kV eff
$4 \mathrm{kV}_{\text {efff }}$
III
approx. 80 g
approx. 225 g
approx. 305 g
approx. 575 g
approx. 785 g

Dimensions

Width x height x depth

without heat sink

with screw terminals:
with cable lug terminals:
$22.5 \times 85 \times 50 \mathrm{~mm}$
$22.5 \times 139 \times 50 \mathrm{~mm}$
with heat sink
Load current

$10 \mathrm{~A}:$	$22,5 \times 99 \times 92 \mathrm{~mm}$
$20 \mathrm{~A}:$	$22,5 \times 99 \times 131 \mathrm{~mm}$
$40 \mathrm{~A}:$	$45 \times 105 \times 135 \mathrm{~mm}$
$60 \mathrm{~A}:$	$67,5 \times 136 \times 127 \mathrm{~mm}$

Standard Type

PK 9260.91 AC $48 \ldots 460$ V 24 A DC $4 \ldots 32$ V
Article number: 0064884

- Load voltage:
- Load current:
- Control voltage:
- Width:

AC 48 ... 460 V
24 A
DC $4 \ldots 32 \mathrm{~V}$
22.5 mm

Variants

PK $9260.91{ }^{1}-\underbrace{10}$
3 With heat sink 10 A
With heat sink 20 A
5 With heat sink 40 A
6 With heat sink 60 A
M4 flat terminal
M5 screw terminal (cable lug)
M5 cable lug terminal (cable lug)
Switching at zero crossing
Instantaneous switching
Standard
With high $I^{2} t$-value

Ordering example for variants

single-phase

Flat terminals
PK 9260.91/_ _0

Screw terminals / cable lug terminals
PK 9260.91/_ _1

PK 9260.91/_ _0 /03

PK 9260.91/_ _0 /04

PK 9260.91/_ _ 0 /05

PK 9260.91/_ _0 /06

BH 9251 up to 10 A

BH 9251 up to 20 A

BH 9251 up to 40 A

Function Diagram

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- Switching at zero crossing
- To switch single-phase AC load up to 400 V
- Compensates voltage fluctuations of ± 20 \%
- Load current up to 40 A
- Monitors:
- Undercurrent
- Overcurrent
- Interrupted load circuit
- monitors temperature to protect the power semiconductor
- De-energized on fault
- One relay output with changeover contact
- LED Indicators
- No auxiliary supply
- Galvanically separated control input X1-X2 with wide voltage range
- Adjustable current response value
- With integrated heat sink
- DIN-rail mounting
- $45 \mathrm{~mm}, 67.5 \mathrm{~mm}$ and 112.5 mm width

Additional Information About This Topic

- Data sheet BF 9250, Semiconductor contactor

Approvals and Markings

C ϵ

Applications

To monitor max. 12 parallel connected heating elements in packaging machines, plastic moulding machines, blister packaging machines etc.

Number-/load of heating elements to be connected to BH 9251, at load voltage AC 230 V

BH 9251				
Load current up to:	5 A	10 A	20 A	40 A
Max. total load of heating elements:	1150 W	2300 W	4600 W	9200 W
Max. no. of heating elements: Load of one element:	12 95 W	12 190 W	12 380 W	12

Monitors:

- Failure of a heating element ≥ 190 W / 380 W / 760 W
- Broken wire detection
- Short circuits between windings of a heating element

Circuit Diagrams

Function

Voltage compensation:

The unit includes voltage compensation of ± 20 \%. Only fault caused by defective heating elements are detected. Current changes caused by voltage fluctuations are ignored.

Failure of one heating element:
If the current decreases from the adjusted value by 8% of the total value the monitoring output switches off. The failure of one heating element $\geq 190 \mathrm{~W}$ will be detected. The control input X1-X2 has to be closed at least 100 ms to allow current sensing.

Broken wire detection in the load circuit:

A broken line in the load circuit is monitored. The output relay switches off.

Overcurrent in the load circuit:

If the current increases from the adjusted value by 10% of the total value the monitoring output switches off. The semiconductor remains active. If the overcurrent decreases to normal current the output relay switches on again. With this function shorts between windings inside the heating elements are detected.
At an overcurrent $\geq 30 \%$ of the total value the output relay switches off together with the semiconductor. This state will be stored. By switching the voltage off and on at L the semiconductor comes on again if there is no overcurrent. The monitoring output closes. This function is used to protect the device agains overload

Temperature monitoring:

The temperature detection gets active when the temperature on the semiconductor is to high. The output relay switches off together with the power semiconductor. It the temperature goes back to normal monitoring output and the semiconductor are switched on again. The time disconnection depends on the ambient temperature.

Indicators	
green LED, continuous light:	Voltage connected, load current and setting value are identical Voltage connected, load current and
green LED, flashing:	setting value are not identical
yellow LED X1, continuous light:	Control input X1, X2 active red LED $\quad>\vartheta$, flashing:
Temperature detection active.	
red LED $\quad<$ I, continuous light:	Overcurrent $\geq 10 \%$

Technical Data

Input
Nominal voltage U_{N} :
L-N:
AC $230 \mathrm{~V} / 48 \mathrm{~V}$
L1-L2:
Voltage range:
Nominal consumption:
Nominal frequency:
Control input X1-X2:
Input voltage:
Input current:
Impulse length:
AC 400 V on request
$0.8 \ldots 1.2 U_{N}$
0.8 W / 3.2 VA
$50 / 60 \mathrm{~Hz}$
galvanically separated
AC/DC 9,6 ... 270 V
approx. 1 mA
$\geq 100 \mathrm{~ms}$
Current Sensing
Measuring range:
Measuring accuracy:
Setting accuracy:
Repeat accuracy:
Adjustment of
current value:
Response value for overcurrent:
Response value for undercurrent:
Voltage compensation:
Sample time:
1... 10 A / 2 ... 20 A / 4 ... 40 A
1% of end scale value
$\pm 2.5 \%$ of end scale value
< ± 1 \%
infinite within measuring range
$\geq 10 \%$ of end scale value, fixed
-8% of end scale value, fixed
± 20 \%
$\leq 100 \mathrm{~ms}$

Technical Data

Output

Load output I_{T}

Load current

AC-51:

Width		
45 mm	67.5 mm	112.5 mm
10 A	20 A	40 A

Values at $\mathrm{Tu}=40^{\circ} \mathrm{C}$ und 100 \% ED

Current reduction

$40^{\circ} \mathrm{C}$
Load voltage:
Cut-off voltage:
Leakage current:
Switching delay:
Semiconductor fuse
BH 9251, 10 A + 20 A:
BH 9251, 40 A:

$$
\begin{aligned}
& \left|0.2 \mathrm{~A} /{ }^{\circ} \mathrm{C}\right| 0.4 \mathrm{~A} /{ }^{\circ} \mathrm{C} \mid 0.6 \mathrm{~A} /{ }^{\circ} \mathrm{C} \\
& 230 \mathrm{~V} \pm 20 \% \\
& 1200 \mathrm{Vp} \\
& <1 \mathrm{~mA} \\
& <100 \mathrm{~ms} \\
& 800 \mathrm{~A}^{2} \mathrm{~s} \\
& 1800 \mathrm{~A}^{2} \mathrm{~s}
\end{aligned}
$$

Monitoring output

Contacts:

BH 9251.11
1 changeover contact
Thermal continuous
current $I_{\text {th }}$:
4 A
Switching capacity
to AC 15
NO:
NC:
Electrical life:
to AC 15 at 3 A, AC 230 V :
Short circuit strength
max. fuse rating:

General Data

Operating mode:

Temperature range:
max. temperature:
Storage temperature:
Clearance and creepage
distances
rated impulse voltage /
Pollution degree
L, N - X1, X2
L, N-11, 12, 14:
X1, X2-11, 12, 14:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge votages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Load terminals:

Control terminals:
Mounting:
Weight:
Width:
45 mm
Dimensions

Continuous operation
$0 \ldots+40^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$ (with current reduction)
$-20 \ldots+80^{\circ} \mathrm{C}$

IEC 60 664-1
IEC 60 664-1
IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-6
Limit value class B
EN 55011
IP 4
IP 20
IEC/EN 60529
IP
IEC/EN 60529
amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
0 / 060 / 04
IEC/EN 60 068-1
$1 \times 10 \mathrm{~mm}^{2}$ solid, or
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN rail
IEC/60 715

400 g

[^2]
Standard Type

BH 9251.11 AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 10 \mathrm{~A}$
Article number: 0052267

- Nominal voltage: \quad AC 230 V
- Load current: 10 A
- Width: 45 mm

Ordering Example

BH 9251

Notes for Installation

Suggested distance:

between relay and cable duct: 20 mm
to neighbour device: 10 mm ; at max. load current and 100 duty cycle

Set-up Procedure

1.) Switch on heating elements by activating control input $X 1$.
2.) When the potentiometer is in left hand position the red LED $>$ I must be on because the unit detects an overcurrent. At the same time the green LED is flashing. Turning the potentiometer slowly clockwise the red LED $>$ I goes of and contact $11-14$ closes. The green LED is still flashing. When the potentiometer is turned further clockwise the LED will change from flashing to continuous light. At this point the window indicating the correct current is reached. Turning further clockwise will make the LED flash again. The width of the window is $\pm 2.5 \%$ of the setting range. To adjust the unit to the optimum setting the potentiometer should be set in the middle between the 2 points where the green LED starts flashing. At this point the actual current flowing and the setting value are identical. Current changes of $> \pm 2.5 \%$ will make the green LED flash again. An undercurrent of 8% will make the red LED <l light up and an overcurrent of 10% will turn the red LED >I on.
The settings can be done also while the voltage is fluctuating within 20 \% from the nominal voltage as changes in these limits are compensated.
3.) Simulating the failure of one heating element by disconnecting the element. The output relay switches off and the LED <l goes on.

Safety Notes

- Failures in the circuit must only be removed when the unit is disconnected.
- The user has to make sure, that the units and the corresponding components are connected and operated according to the local, legal and technical standards (e.g. TÜV, BG, VDE).
- Adjustment must only be done by educated personnel according to the appropriate safety standards. For work in the circuit and on the product the unit must be disconnected form the mains.

Application Examples

POWERSWITCH
Solid-State Relay / - Contactor
PH 9260
11 - 10

Circuit Diagram

PH 9260.91

Connection Terminals	
Terminal designation	Signal description
A1 (+), A2	Control input
L1	Mains connections
T1	Load output

- AC solid-state relay / -contactor
- According to IEC/EN 60947-4-3
- Load current up to $125 \mathrm{~A}, \mathrm{AC} 51$ with I^{2} t up to $18000 \mathrm{~A}^{2} \mathrm{~S}$
- Switching at zero crossing
- As option switching at voltage maximum
- 2 anti-parallel thyristors
- DCB technology (direct bonding method) for excellent heat transmission properties
- Touch protection IP20
- Box terminals
- LED status indicator
- Peak reverse voltage 1200 V or 1600 V
- Insulation voltage 4000 V
- As option with overtemperature protection
- As option with reduced HF-emission
- As option with heat sink, for DIN rail mounting
- Width: 45 mm

Approvals and Markings

Applications

Solid-state relays switching at zero crossing:
For frequent no-wear and no-noise switching of

- heating systems
- motors
- valves
- lighting systems

The solid-state relay switches at zero crossing and is suitable for many applications e.g. extrusion machines for plastic and rubber, packaging machines, solder lines, machines in food industry.

Solid-state relays switching at voltage maximum:
he solid-state relay PH 9260/020 switching at voltage maximum is suitable to switch transformers. The usual high inrush current does not occur.

Function

The solid-state relay PH 9260 is designed whith 2 anti-parallel connected thyristors switching at zero crossing.
When connecting the control voltage the output of the solid-state relay is activated at the next zero crossing of the sinusoidal voltage. When disconnecting the control voltage the output is switched off at the next zero crossing of the load courrent.
The LED shows the state of the control input.
As option the solid-state relay is available with heatsink to be mounted on DIN rail. This provides optimum heat transmission.

Notes

Overtemperature protection

Optionally, the solid-state relay has an overtemperature protection to monitor the temperature of the heat sink. To this end, a thermal release switch (NC contact) can be inserted into the respective pocket at the bottom of the solid-state relay. As soon as the temperature of the heat sink exceeds for example $100^{\circ} \mathrm{C}$, the thermal release switch. For thermal protection of the solid-state relay, a thermal release switch of UCHIYA type UP62-100 can be installed.

Technical Data

Output

Load voltage AC [V]:
PH 9260: 24 ... 240, 48 ... 480, 48 ... 600
PH 9260/020:
Frequency range [Hz]:
Load current [A], AC-51:
PH 9260, PH 9260/020:
Load current [A], AC-56a:
PH 9260/020:
Load limit integral $I^{2} t\left[A^{2} s\right]$:
Max. overload current [A]
$\mathrm{t}=10 \mathrm{~ms}$:
Periodic overload current
$\mathrm{t}=1 \mathrm{~s}[\mathrm{~A}]$:
Min. current [mA]:
On-state voltage at nominal current [V]:
Rate of rise of off-state voltage $[\mathrm{V} / \mu \mathrm{s}]$:
Rate of rise of current $[\mathrm{A} / \mu \mathrm{s}]$:

Temperature Data

Thermal resistance
junction - housing [K/W]:
Thermal resistance
housing - ambient [K/W]:
Junction temperature $\left[{ }^{\circ} \mathrm{C}\right]$:

$47 . . .63$			
25	50	$100^{1)}$	125 ${ }^{1 /}$
10	$\begin{gathered} 20 \\ 30^{3)} \end{gathered}$	-	-
800	$\begin{gathered} 1800 \\ 6600^{22} \end{gathered}$	6600	18000
400	$\begin{gathered} 600 \\ 1150^{2} \end{gathered}$	1150	1900
40	$\begin{gathered} 120 \\ 150^{2)} \end{gathered}$	150	200
20			
1.2	1.4	1.4	1.3
500	500	1000	1000
100	100	100	150
0.6	0.5	0.3	0.3
12	12	12	12

${ }^{1)}$ Only for pulse operation: Please make sure, that the mean value of the current does not exceed 50 A on these devices.
${ }^{2)}$ Variant PH 9260.91/1_
${ }^{3)}$ Variant PH 9260.91/120

Control Circuit

\begin{tabular}{|c|c|c|c|}
\hline \& DC \& AC/DC \& AC/DC \\
\hline Control voltage range [V]: \& 4... 32 \& \(18 . .36\) \& 100 ... 240 \\
\hline Max. nominal input current [mA]:
PH 9260: \& 12 \& \[
\begin{aligned}
\& 25 \text { (AC) } \\
\& 12 \text { (DC) }
\end{aligned}
\] \& 5 bei 240 V AC (regulated) \\
\hline Max. nominal input current [mA]: PH 9260/020: \& 20 \& - \& - \\
\hline \begin{tabular}{l}
Turn-on delay [ms]: \\
Turn-off delay [ms] \\
at AC/DC \(18 \ldots 36 \mathrm{~V}\) : \\
at \(\mathrm{AC} / \mathrm{DC} 85 \ldots 265 \mathrm{~V}\) :
\end{tabular} \& \(5+1 / 2\)

$20+1 / 2$
$30+1 / 2$ \& \&

\hline
\end{tabular}

Technical Data

General Data
Operating mode:
Temperature range:
operation:
storage:
Clearance and creepage
distances
rated impulse voltage / pollution degree:
EMC:
Electrostatic discharge (ESD): HF irradiation:
Fast transients: Surge voltages between wires for power supply: between wire and ground: HF-wire guided Interference suppression:

Degree of protection

Housing:
Terminals:
Vibration resistance:
Housing material:
Base plate:
Potting compound:
Mounting screws:
Connections control circuit:
Fixing torque:
Wire cross section:
Connections load circuit:
Fixing torque:
Wire cross section:
Nominal insulation voltage
Control circuit - load circuit:
Load circuit - base plate:
Overvoltage category:

Weight

without heat sink:
PH 9260.91/_ _ /01:
PH 9260.91/___/02:

Dimensions

Width \mathbf{x} height x depth
without heat sink:
PH 9260.91/__ /01:
PH 9260.91/_ _ _ /02:

Continuous operation

- 20 ... $40^{\circ} \mathrm{C}$
- 20 ... $80^{\circ} \mathrm{C}$

6 kV / 3
IEC/EN 60 664-1
IEC/EN 61 000-6-4, IEC/EN 61 000-4-1
8 kV air / 6 kV contact IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$2 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

1 kV
IEC/EN 61 000-4-5
$2 \mathrm{kV} \quad$ IEC/EN 61 000-4-5
10 V IEC/EN 61 000-4-6
Limit value class A^{*}
${ }^{*}$) The device is designed for the usage under industrial conditions
(Class A, EN 55011)
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated.
To avoid this, appropriate measures have to be taken.

IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Amplitude 0.35 mm
frequency 10 ... 55 Hz , IEC/EN 60-068-2-6
Fiberglass reinforced polycarbonate Flame resistant: UL 94 V0
Aluminum, copper nickle-plated
Polyurethane
M5 x 8 mm
2.5 Nm

Mounting screws M3 Pozidrive 2 PT 0.5 Nm
$1.5 \mathrm{~mm}^{2}$ wire
Mounting screws M4 Pozidrive 1 PT 1.2 Nm
$10 \mathrm{~mm}^{2}$ wire
$4 \mathrm{kV}_{\text {eff. }}$
$4 \mathrm{kV}_{\text {eff. }}$
II
approx. 120 g
approx. 550 g
approx. 670 g

UL-Data

Control voltage:

Load type:
Wire connection:
3A1+ / 4A2:
1L1 / 2T1:

The load current printed on the device applies to an ambient temperature of $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Technical Data

Contents of Article Numbers

Type		PH 9260							
Variant (Designation)									
Load current		25 A	25 A	50 A	$50 \mathrm{~A}^{3)}$	50 A	$50 \mathrm{~A}^{3}$	100 A	125 A
Load voltage	Control voltage								
$24 . .240$ V AC	4 ... 32 V DC	0056651	0056953	0056652	0056954	0057699	0058195	0056821	0059736
	$18 . .36 \mathrm{~V}$ AC/DC	0063505	0063676	*	*	*	*	*	*
	$100 . . .240 \mathrm{~V}$ AC/DC	0061422	0058255	0059749	0058256	*	*	0059631	*
48 ... 480 V AC	4 ... 32 V DC	0056653	0056955	0056654	0056956	0057700	0058196	0056822	0059737
	18 ... 36 V AC/DC	*	*	*	*	*	*	*	*
	$100 . . .240 \mathrm{~V} \mathrm{AC/DC}$	0059690	0061943	0059691	0059074	*	*	0063193	*
48 ... 600 V AC	4 ... 32 V DC	0058676	*	*	0059980	0058678	*	0058677	*
	$18 . .36 \mathrm{~V}$ AC/DC	*	*	0058958	*	0058960	*	*	*
	$100 . . .240 \mathrm{~V} \mathrm{AC/DC}$	*	*	0058959	*	0058961	*	*	*

At devices without heatsink the necessary heatsink has to be chosen according to the dimensioning notes.

* On request

Units with UL-Approval
${ }^{3)}$ for stepping operation with 80% ED

Standard Type

PH 9260.91 AC 48 ... 480 V 50 A DC $4 \ldots 32$ V
Article number:

- Load voltage:
- Load current: 0056654

Control voltage:
AC 48 ... 480 V
50 A
DC $4 \ldots 32 \mathrm{~V}$
45 mm

Variants

PH 9260.91

> 1 With heat sink $1.5 \mathrm{~K} / \mathrm{W}$
> 2 With heat sink 0.95 K / W
> 0 Standard
> 1 Low-Noise-Version with reduced HF-emission (Leakage current in off state: 18 mA at AC 480 V)
> 0 Switching at zero crossing
> 2 Switching at voltage maximum
> 0 Standard
> 1 With heigh $\mathrm{I}^{2} \mathrm{t}$-value

Ordering example for variants

Dimensions

Accessories

PH 9260-0-12:
Graphite foil $55 \times 40 \times 0.25 \mathrm{~mm}$ to be fitted between device and heat sink, for better heat transmission Article number: 0058395

For the 100 A - and 125 A-variants we recommend a $25 \mathrm{~mm}^{2}$ adapter terminal type 802/115S, Brand FTG.

Selection of a Heat Sink

Load current (A)	PH 926025 A Thermal resistance (K/W)					
25.0	2.8	2.5	2.1	1.8	1.5	1.1
22.5	3.2	2.8	2.5	2.1	1.7	1.3
20.0	3.7	3.3	2.8	2.4	2.0	1.6
17.5	4.3	3.8	3.4	2.8	2.4	1.9
15.0	5.1	4.6	4.0	3.5	2.9	2.4
12.5	6.3	5.6	5.0	4.3	3.6	2.8
10.0	8.0	7.2	6.4	5.6	4.7	3.9
7.5	11.0	9.9	8.7	7.6	6.5	5.4
5.0	16.8	15.0	13.5	12.0	10.0	8.5
2.5	-	-	-	-	21.0	17.6
	20	30	40	50	60	70
	Ambient-temperature (${ }^{\circ} \mathrm{C}$)					

Load current (A)	PH 9260 Thermal resistance (K/W)					
$\mathbf{5 0}$	0.9	0.7	0.6	0.4	0.3	-
$\mathbf{4 5}$	1.0	0.9	0.7	0.5	0.4	0.2
$\mathbf{4 0}$	1.2	1.0	0.9	0.7	0.5	0.3
$\mathbf{3 5}$	1.5	1.3	1.0	0.9	0.7	0.5
$\mathbf{3 0}$	1.9	1.6	1.4	1.1	0.9	0.7
$\mathbf{2 5}$	2.4	2.0	1.8	1.5	1.2	0.9
$\mathbf{2 0}$	3.0	2.7	2.4	2.0	1.9	1.3
$\mathbf{1 5}$	4.4	3.9	3.4	2.9	2.5	2.0
$\mathbf{1 0}$	6.9	6.0	5.4	4.7	4.0	3.3
$\mathbf{5}$	14.0	12.9	11.5	10.0	8.6	7.2
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature (${ }^{\circ} \mathbf{C}$)					

Load current (A)	PH 9260 100 A Thermal resistance (K/W)					
$\mathbf{1 0 0}$	0.43	0.35	0.25	0.2	-	-
$\mathbf{9 0}$	0.56	0.46	0.35	0.28	0.2	-
$\mathbf{8 0}$	0.7	0.6	0.5	0.4	0.3	0.2
$\mathbf{7 0}$	0.9	0.8	0.65	0.55	0.4	0.3
$\mathbf{6 0}$	1.2	1.0	0.9	0.75	0.6	0.46
$\mathbf{5 0}$	1.6	1.4	1.2	1.0	0.85	0.6
$\mathbf{4 0}$	2.3	2.0	1.8	1.5	1.2	1.0
$\mathbf{3 0}$	3.4	3.0	2.5	2.2	2.0	1.5
$\mathbf{2 0}$	5.6	5.0	4.5	3.9	3.3	2.7
$\mathbf{1 0}$	12.0	11.0	10.0	9.0	7.6	6.0
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature (${ }^{\circ} \mathbf{C}$)					

Load current (A)	PH 9260 125 A Thermal resistance (K/W)					
$\mathbf{1 2 5}$	0.5	0.4	0.3	0.2	0.1	0.1
$\mathbf{1 1 2 . 5}$	0.6	0.5	0.4	0.3	0.2	0.1
$\mathbf{1 0 0}$	0.7	0.6	0.5	0.4	0.3	0.2
$\mathbf{8 7 . 5}$	0.9	0.8	0.7	0.5	0.4	0.3
$\mathbf{7 5}$	1.0	1.0	0.9	0.7	0.6	0.5
$\mathbf{6 2 . 5}$	1.5	1.4	1.1	1.0	0.8	0.7
$\mathbf{5 0}$	2.0	1.8	1.6	1.3	1.1	0.9
$\mathbf{3 7 . 5}$	3.0	2.6	2.3	2.0	1.7	1.4
$\mathbf{2 5}$	4.7	4.2	3.5	3.0	2.8	2.3
$\mathbf{1 2 . 5}$	10.2	9.0	8.0	7.0	6.0	5.0
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature ($\left.{ }^{\circ} \mathbf{C}\right)$					

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current must be dissipated by a suitable heat sink. It is imperative that the junction temperature of the solid-state is maintained for all potential environmental temperatures of under $125^{\circ} \mathrm{C}$. For this reason, it is important to keep the thermal resistance between the base plate of the solid-state relay and the heat sink to a minimum.

To protect the solid-state relay effectively from excess heating, a thermally conducting paste should be applied before installation to the base plate of the heat sink between solid-state relay and heat sink.

From the tables below, select a suitable heat sink with the next lowest thermal resistance. Thus, it is ensured that the maximum junction temperature of $125^{\circ} \mathrm{C}$ is not exceeded. The load current in relation to the environmental temperature can be seen from the table.

Application Examples

Installation Instructions

General Information

The service life and long-time reliability of a solid-state relay depends on its installation and use. Load type, load current, switching frequency, mains voltage and ambient temperature must be taken into account during the project design. To ensure the reliable operation of the devices, an exact analysis of the application and a calculation of the heat sink must be conducted in advance. Solid-state relays constantly produce heat during operation. The ambient conditions therefore require special attention. The choice of the correct heat sink is especially important since the constant overtemperature significantly reduces the service life of the devices. The use of a temperature switch is recommended if neither the load conditions nor the ambient temperatures are known. This switch is available as accessory and is inserted in a pocket on the bottom side.
Attention: The load output is not electrically separated from the mains even if no drive is present

Overload protection (Fig. 1)

The solid-state relay must be protected against short circuit by a separate solid-state fuse of coordination type 2. Choosing the I2t value (switch-off integral) of the fuse half as large as the I2t value of the solid-state is recommended

Overvoltage protection (Fig. 1)

Although the solid-state relays can withstand high peak voltages, it is better to switch an external varistor parallel to the load output. This is particularly recommended when switching inductive loads. The varistor voltage must be selected appropriate for the mains voltage. A wrong selection can create hazardous situations. As an option, the varistor is factory-installed.

Assembly on the heat sink (Fig. 2, Fig. 3)

A small amount of silicon-containing heat transfer compound is to be applied to the base plate to ensure a good thermal bond between solid-state relay and heat sink. As an alternative, a graphite foil can be placed between solid-state relay and heat sink.

Attention!

Heat transfer compounds without silicon should not be used, since they may attack the plastic of the housing .

The solid-state relay is mounted to the heat sink using two M5x8 screws and matching washers. Both screws should be tightened in alternating fashion until a torque of 1 Nm is reached. After approx. one hour the screws need to be tightened further with a final torque of 2.5 Nm . This ensures that all excess heat transfer compound is squeezed out or that the graphite foil can well adapt to the contours of the surfaces.

Installation of the complete unit (Fig. 4)
The fins of the heat sink must be aligned in a manner allowing the unobstructed circulation of air. Without external fan, the fins must be aligned vertically to support natural convection.

Connection

	Control terminals	Load terminals
Screw:	M3 Pozidrive	M4 Pozidrive
Tightening torque:	$0,5 \mathrm{Nm}$	$1,2 \mathrm{Nm}$
Wire gauge:	$1,5 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}^{2}$

Attention! When using pneumatic or electric power screwdrivers, their torque limit must be set correctly.

Installation Instructions

Fig. 3

Fig. 4

Function Diagram

$\Delta t=$ max. 20 ms ; zero crossing control

Circuit Diagram

PH 9260.92

Connection Terminals
Terminal destinations Signal description A1+, A2; A4+, A3 Control inputs L1, L2 Mains connections T1, T2 Load outputs

Your Advantages

- Free from wearing, noiseless, economic
- Excellent EMC- performance, because of switching at zero crossing
- Separate control of both poles
- Available with heatsink to be mounted on DIN rail
- Easy connection via cage clamp terminals

Features

- AC solid-state relay / -contactor
- According to IEC/EN 60947-4-3
- As option load current up to 2×32 A or 2×48 A
- As option with hight $\mathrm{I}^{2} \mathrm{t}$ up to $6600 \mathrm{~A}^{2} \mathrm{~s}$
- Load voltages up to AC 480 V
- 2 anti-parallel thyristors for each pole
- DCB technology (direct bonding method) for excellent heat transmission propertie
- Touch protection IP20
- Box terminals for load connections
- LED status indicator for both poles
- Peak reverse voltage up to ± 1200 V
- Insulation voltage 4000 V
- Width 45 mm

Approvals and Markings

c ϵ

Applications

Solid state relays switching at zero crossing:
For frequent no-wear and no-noise switching of

- heating systems
- motors
- valves
- lighting systems

The solid-state relay switches at zero crossing and is suitable for many applications e.g. extrusion machines for plastic and rubber, packaging machines, solder lines, machines in food industry.

Function

The solid-state relay PH 9260 is designed whith 2 anti-parallel connected thyristors switching at zero crossing.
When connecting the control voltage the output of the solid-state relay is activated at the next zero crossing of the sinusoidal voltage. When disconnecting the control voltage the output is switched off at the next zero crossing of the load courrent.
The LED shows the state of the control input.
As option the solid-state relay is available with heatsink to be mounted on DIN rail. This provides optimum heat transmission.

Technical Data

Output

Load voltage AC [V]
Frequency range [Hz]:
Load current [A], AC-51:
Load limit integral I2t [A2s]:
Max. Overload current [A]
$\mathrm{t}=10 \mathrm{~ms}$:
Periodic overload current
$\mathrm{t}=1 \mathrm{~s}[\mathrm{~A}]$:
Min. current [mA]:
On-state voltage
at nominal current [V]:
Rate of rise of
off-state voltage [V/ $\mathrm{\mu s}$]:
Rate of rise of current [$\mathrm{A} / \mu \mathrm{s}$]:
Thermische Daten
Thermal resistance junction - housing [K/W]:
Thermal resistance housing - ambient [K/W]:
Junction temperature $\left[{ }^{\circ} \mathrm{C}\right]:$

$47 \ldots 63$	
32	48
$\begin{gathered} 800 \\ 6600^{*)} \end{gathered}$	$\begin{gathered} 1800 \\ 6600^{*)} \end{gathered}$
$\begin{gathered} 400 \\ 1150^{*)} \end{gathered}$	$\begin{gathered} 600 \\ 1150^{*)} \end{gathered}$
$\begin{gathered} 40 \\ 150^{*)} \end{gathered}$	$\begin{gathered} 120 \\ 150^{\star} \end{gathered}$
20	
1.2	1.4
500	500
100	100
0.6	0.5
12	12
≤ 125	

*) Variant PH 9260.92/100
Control Circuit
Control voltage range [V]:
DC 18 ... 30
max. input current [mA]:
Turn-on delay [ms]:
15
0.5 ... 10.5

Turn-off delay [ms]:

General Data

Operating mode:
Temperature range:
operation:
storage:

Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC:
Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:

Degree of protection

Housing:

Terminals:
Vibration resistance:
Housing material:
Base plate:
Potting compound:
Mounting screws:
Fixing torque:
Connections control circuit:
Wire cross section:

Continuous operation

- 20 ... $40^{\circ} \mathrm{C}$
$-20 \ldots 80^{\circ} \mathrm{C}$

6 kV / 3
IEC/EN 60 664-1
IEC/EN 61 000-6-4, IEC/EN 61 000-4-1
8 kV air
$10 \mathrm{~V} / \mathrm{m}$
2 kV

1 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5 IEC/EN 61 000-4-6 10 V

Technical Data

Connections load circuit:
Fixing torque:
Wire cross section:
Nominal insulation voltage
Control circuit - load circuit: Load circuit - base plate: $\begin{array}{ll}\text { Load circuit - base plate: } & 4 \mathrm{kV}_{\text {eff }} \\ \text { Control circuit A1/A2 - A3/A4: } & 250 V_{\text {effi }}\end{array}$
Overvoltage category:
Weight
without heat sink:
PH 9260.92/_ _ _ /01:
PH 9260.92/_ _ _ 102 :

Dimensions

Width \mathbf{x} height \mathbf{x} depth without heat sink:: PH 9260.92/_ _ _ 101 : PH 9260.92/__ 102 :

Mounting screws M4 Pozidrive 2 PT $1,2 \mathrm{Nm}$
$10 \mathrm{~mm}^{2}$ wire
$4 \mathrm{kV}_{\text {eff. }}$ II
approx. 107 g
approx. 537 g
approx. 657 g

Accessories	
PH 9260-0-12:	Graphite foil $55 \times 40 \times 0.25 \mathrm{~mm}$ to be fitted between device and heat sink, for better heat transmission Article number: 0058395

Standard Type	
PH 9260.92 AC $48 \ldots 480 \mathrm{~V}$	$2 \times 48 \mathrm{~A} \quad \mathrm{DC} 18 \ldots 30 \mathrm{~V}$
Article number:	0064252
- Load voltage:	AC $48 \ldots 480 \mathrm{~V}$
- Load current:	$2 \times 48 \mathrm{~A}$
- Control voltage:	DC $18 \ldots 30 \mathrm{~V}$
- Width:	45 mm

Varianten

PH 9260.92 /_ $00 / 0$

Ordering example for variants

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current must be dissipated by a suitable heat sink. It is imperative that the junction temperature of the semiconductor is maintained for all potential environmental temperatures of under $125^{\circ} \mathrm{C}$. For this reason, it is important to keep the thermal resistance between the base plate of the solid-state relay and the heat sink to a minimum.

To protect the solid-state relay effectively from excess heating, a thermally conducting paste should be applied before installation to the base plate of the heat sink between solid-state relay and heat sink.

From the tables below, select a suitable heat sink with the next lowest thermal resistance. Thus, it is ensured that the maximum junction temperature of $125^{\circ} \mathrm{C}$ is not exceeded. The load current in relation to the environmental temperature can be seen from the table.

Selection of a Heat Sink

Load current (A)	Version for $2 \times 32 ~ A ~$					
$\mathbf{6 4}$	0.9	0.8	0.6	0.55	0.4	0.3
$\mathbf{5 6}$	1.1	0.9	0.8	0.65	0.55	0.4
$\mathbf{4 8}$	1.3	1.1	1.0	0.85	0.6	0.5
$\mathbf{4 0}$	1.6	1.4	1.2	1.1	0.9	0.7
$\mathbf{3 2}$	2.1	1.9	1.6	1.4	1.2	0.9
$\mathbf{2 6}$	2.7	2.4	2.1	1.8	1.5	1.2
$\mathbf{1 6}$	4.7	4.2	2.7	3.2	2.7	2.2
$\mathbf{8}$	10.0	8.5	7.8	6.8	5.9	5.0
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature ($\left.{ }^{\circ} \mathbf{C} \mathbf{C}\right)$					

Load current (A)	Version for 2 x 48 A Thermal resistance (K/W)					
$\mathbf{9 6}$	0.6	0.5	0.4	0.35	0.25	0.15
$\mathbf{8 4}$	0.7	0.6	0.55	0.45	0.35	0.25
$\mathbf{7 2}$	0.9	0.8	0.65	0.55	0.45	0.35
$\mathbf{6 0}$	1.1	1.0	0.85	0.75	0.6	0.45
$\mathbf{4 8}$	1.5	1.3	1.1	1.0	0.8	0.65
$\mathbf{3 6}$	2.1	1.9	1.6	1.44	1.2	0.9
$\mathbf{2 4}$	3.3	3.0	2.6	2.3	1.9	1.6
$\mathbf{1 2}$	7.0	6.0	5.5	4.9	4.0	3.5
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature (${ }^{\circ} \mathbf{C} \mathbf{C}$)					

Load current (A)	Thermal resistance (K/W)					
96	0.8	0.7	0.6	0.5	0.4	0.3
84	0.9	0.8	0.7	0.61	0.5	0.4
72	1.1	1.0	0.85	0.75	0.6	0.45
60	1.4	1.2	1.1	0.9	0.75	0.6
48	1.8	1.6	1.4	1.2	1.0	0.8
36	2.5	2.2	1.9	1.65	1.4	1.2
24	3.5	3.4	3.0	2.6	2.2	1.85
12	7.5	7.0	6.0	5.5	4.5	4.0
	20	30	40	50	60	70
	Ambient-temperature (${ }^{\circ} \mathrm{C}$)					

Application Examples

Ansteuerung durch galvanisch getrennte Ausgänge.

Ansteuerung durch Ausgänge mit gemeinsamer Masse.

POWERSWITCH

Solid-State Relay / - Contactor With Analogue Input For Pulse Package Control PH 9260/042

DOLD 哭

Circuit Diagram

PH 9260.91/_42

Connection terminals
Terminal designation Signal designation A1 (+), A2 Analogue control input L1 Control input A1 Load output

Your advantages

- Self-optimized impulse distribution with minimized cycle times
- Allows for precise temperature regulation
- Switching at zero crossing, providing outstanding EMC properties
- Protection from thermal overload with optional excess temperature protection

Features

- AC solid-state relay / -contactor for pulse package control of heating systems
- Control input DC $4 \ldots 20 \mathrm{~mA}$
- According to IEC/EN 60947-4-2
- Nominal voltage AC 48 ... 480 V
- Load current 25A, 50 A, AC-51
- LED status indicator for control and failure
- Box terminals
- Degree of protection IP20
- As option with heat sink, for DIN rail mounting
- Width: 45 mm

Approvals and Markings

Applications

The zero crossing solid-state relay switches with $4 \ldots 20 \mathrm{~mA}$ analogue input for pulse package control is ideal for the control of heating elements and infrared lamps. It allows for precise temperature regulation, and offers a wide variety of potential applications with fast and noiseless switching, e.g. extrusion machines for plastic and rubber, at thermoforming machines, packaging machines or machines in food industry.

Functions

The solid-state relay PH 9260/042 is designed whith 2 anti-parallel connected thyristors switching at zero crossing. The output of the solid-state relay is activated at the next zero crossing of the sinusoidal voltage. When disconnecting the control signal the output is switched off at the next zero crossing of the load current.
The on/off switching ratio of the output is set proportional to the control current. The control voltage range of 4 to 20 mA is converted into an on/off switching ration of 0 to 100%. Two LEDs indicate the device status.
As option the solid-state relay is available with heatsink to be mounted on DIN rail. This provides optimum heat transmission.

Indication

yellow LED „A1-A2":
red LED „Alarm":

- flashes slowly:
- flashes fast:

Operating voltage and control current available. The flashing cycle corresponds to the on/off switching ratio specified by the control current. At a control current $<4 \mathrm{~mA}$ or $>25 \mathrm{~mA}$, activation does not occur and the LED does not illuminate.
at control current $<4 \mathrm{~mA}$ at control current > 21 mA

Notes

Overtemperature protection

Optionally, the solid-state relay has an overtemperature protection to monitor the temperature of the heat sink. To this end, a thermal release switch (NC contact) can be inserted into the respective pocket at the bottom of the solid-state relay. As soon as the temperature of the heat sink exceeds for example $100^{\circ} \mathrm{C}$, the thermal release switch. For thermal protection of the solid-state relay, a thermal release switch of UCHIYA type UP62-100 can be installed.

Technical Data

Control Input

Operation voltage A1/A2:
Burden voltage:
Current range:
Overcurrent protection:
Resolution:
Output
Load voltage AC [V]
Frequency range [Hz]:
Load current [A], AC-51:
Load limit integral $\mathrm{l}^{2 \mathrm{t}}\left[\mathrm{A}^{2} \mathrm{~s}\right]$:
Max. overload current [A]
$\mathrm{t}=10 \mathrm{~ms}$:
Periodic overload current
$\mathrm{t}=1 \mathrm{~s}[\mathrm{~A}]$:
Min. current [mA]
On-state voltage
at nominal current [V]:
Peak reverse voltage [V]:
On-state voltage [V/ ss]:
Rate of rise of current $[\mathrm{A} / \mu \mathrm{s}]$.

Temperature Data

Thermal resistance
junction - housing [K/W]:
Thermal resistance
housing - ambient [K/W]:
Junction temperature [$\left.{ }^{\circ} \mathrm{C}\right]$:

48 ... 480	
$47 \ldots 63$	
25	50
$\begin{gathered} 800 \\ 6600^{1)} \end{gathered}$	$\begin{gathered} 1800 \\ 6600^{1)} \end{gathered}$
$\begin{gathered} 400 \\ 1150^{1)} \end{gathered}$	$\begin{gathered} 600 \\ 1150^{1)} \end{gathered}$
$\begin{gathered} 40 \\ 150^{1)} \end{gathered}$	$\begin{gathered} 120 \\ 150^{1)} \end{gathered}$
20	
1.2	1.4
1200	
500	
100	
0.6	0.5

1) Variant PH 9260.91/142

General Data

Operating mode:
Temperature range:
operation:
storage:
Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC:
Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided
Interference suppression:

Degree of protection

Housing:
Terminals:
Vibration resistance:
Housing material:
Base plate:
Potting compound:
Mounting screws:
Fixing torque:
Connections control circuit:
Fixing torque:
max. 35 V DC
max. $8 \mathrm{~V}(<400 \Omega$ at 20 mA$)$
DC $4 \ldots 20 \mathrm{~mA}$
limit to 35 mA
5%

Technical Data

Wire cross section:
Connections load circuit:
Fixing torque:
Wire cross section:
Nominal insulation voltage
Control circuit - load circuit:
Load circuit - base plate:
Overvoltage category:
Weight
without heat sink:
PH 9260.91/_ _ _ /01
PH 9260.91/_-_/02
$1.5 \mathrm{~mm}^{2}$ wire
Mounting screws M4 Pozidrive 1 PT

1.2 Nm

$10 \mathrm{~mm}^{2}$ wire
$4 \mathrm{kV}_{\text {eff }}$
$4 \mathrm{kV}_{\text {eff. }}$
II
approx. 100 g
approx. 530 g
approx. 650 g

Dimensions

Width x height x depth

 without heat sink:$45 \times 59 \times 32 \mathrm{~mm}$ PH 9260.91/_ _ _ /01: PH 9260.91/ 102 : $45 \times 100 \times 124 \mathrm{~mm}$

Accessories

PH 9260-0-12:

Graphite foil $55 \times 40 \times 0.25 \mathrm{~mm}$ to be fitted between device and heat sink, for better heat transmission Article number: 0058395

Characteristics

Control characteristic

Cycle diagram with selfoptimizing puls packaging

Standard Type

PH 9260.91/042 AC $48 \ldots 480$ V 50 A DC $4 \ldots 20 \mathrm{~mA}$
Article number:

- Load voltage:
- Load current:
- Control current:
- Width: 0062777
AC 48 ... 480 V
50 A
DC $4 \ldots 20 \mathrm{~mA}$
45 mm

Variants

PH 9260.91 /_ 42 / 0_{-}

Ordering example for variants

PH 9260.91 / $142 / 02$ AC $48 \ldots 480 \mathrm{~V} 50 \mathrm{~A}$ DC $4 \ldots 20 \mathrm{~mA}$

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current must be dissipated by a suitable heat sink. It is imperative that the junction temperature of the semiconductor is maintained for all potential environmental temperatures of under $125^{\circ} \mathrm{C}$. For this reason, it is important to keep the thermal resistance between the base plate of the solid-state relay and the heat sink to a minimum.

To protect the solid-state relay effectively from excess heating, a thermally conducting paste should be applied before installation to the base plate of the heat sink between solid-state relay and heat sink.

From the tables below, select a suitable heat sink with the next lowest thermal resistance. Thus, it is ensured that the maximum junction temperature of $125^{\circ} \mathrm{C}$ is not exceeded. The load current in relation to the environmental temperature can be seen from the table.

Selection of a Heat Sink						
Load current (A)	PH 9260 Thermal resistance (K/W)					
$\mathbf{2 5 . 0}$	2.8	2.5	2.1	1.8	1.5	1.1
$\mathbf{2 2 . 5}$	3.2	2.8	2.5	2.1	1.7	1.3
$\mathbf{2 0 . 0}$	3.7	3.3	2.8	2.4	2.0	1.6
$\mathbf{1 7 . 5}$	4.3	3.8	3.4	2.8	2.4	1.9
$\mathbf{1 5 . 0}$	5.1	4.6	4.0	3.5	2.9	2.4
$\mathbf{1 2 . 5}$	6.3	5.6	5.0	4.3	3.6	2.8
$\mathbf{1 0 . 0}$	8.0	7.2	6.4	5.6	4.7	3.9
$\mathbf{7 . 5}$	11.0	9.9	8.7	7.6	6.5	5.4
$\mathbf{5 . 0}$	16.8	15.0	13.5	12.0	10.0	8.5
$\mathbf{2 . 5}$	-	-	-	-	21.0	17.6
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature (${ }^{\circ} \mathbf{C}$)					

Load current (A)	PH 9260 $\mathbf{5 0 ~ A}$ Thermal resistance (K/W)					
$\mathbf{5 0}$	0.9	0.7	0.6	0.4	0.3	-
$\mathbf{4 5}$	1.0	0.9	0.7	0.5	0.4	0.2
$\mathbf{4 0}$	1.2	1.0	0.9	0.7	0.5	0.3
$\mathbf{3 5}$	1.5	1.3	1.0	0.9	0.7	0.5
$\mathbf{3 0}$	1.9	1.6	1.4	1.1	0.9	0.7
$\mathbf{2 5}$	2.4	2.0	1.8	1.5	1.2	0.9
$\mathbf{2 0}$	3.0	2.7	2.4	2.0	1.9	1.3
$\mathbf{1 5}$	4.4	3.9	3.4	2.9	2.5	2.0
$\mathbf{1 0}$	6.9	6.0	5.4	4.7	4.0	3.3
$\mathbf{5}$	14.0	12.9	11.5	10.0	8.6	7.2
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature (${ }^{\circ} \mathbf{C}$)					

POWERSWITCH
Solid-state Relay / - Contactor With Load Circuit Monitoring PH 9270

PH 9270.91

Connection Terminals
Terminal designation Signal description A1+, A2 Control input A3+, A2 Operating voltage, load circuit monitoring Alarm Solid-state outputs L1 Network T1 Load output

Indication

The LED „A1/A2" shows the state of the control input
yellow: controlled semiconductor relays
off: not controlled semiconductor relays
The LED „Alarm" shows the state of the unit
green: no failure
red: failure (thyristor defective with open or short circuit, open load, current value to high or to low or supply voltage < 100 V AC)
off: no auxiliary voltage (A3+/A2)

Notes

Overtemperature protection

Optionally, the solid-state relay has an overtemperature protection to monitor the temperature of the heat sink. For this purpose, a thermal switch (NC contact) can be inserted into the respective pocket at the bottom of the solid-state relay. As soon as the temperature of the heat sink exceeds for example $100^{\circ} \mathrm{C}$, the thermal switch opens. For thermal protection of the solid-state relay, a thermal switch of UCHIYA type UP62-100 can beinstalled.

- AC solid-state relay /-contactor
- With integrated load circuit monitoring
- Settable load limit value
- According to IEC/EN 60947-4-3
- Load current 40 A, AC 51
- Switching at zero crossing
- 2 anti-parallel thyristors
- DCB technology (direct bonding method) for excellent heat transmission properties
- Two-colours LED status indicator
- Touch protection IP20
- PLC compatible alarm output (PNP; NPN on request)
- As option closed circuit operation or open circuit operation
- As option with optimized heat sink, for DIN rail mounting
- Width 45 mm

Approvals and Markings

$\mathrm{C} \in$

Applications

For high frequency wear free and noiseless switching of

- heating systems
- motors
- valves*
- lighting systems

The semiconductor switches at zero crossing. The integrated load monitoring provides fast fault finding e.g. broken load elements (part load failure), broken load circuit, overcurrent, missing load voltage, blown fuse and thyristor faults.
The PH 9270 is suitable for many applications e. g. extrusion machines for plastic and rubber, packaging machines, solder lines, machines in food industry.

* On overcurrent monitoring a start up delay must be integrated in the control.

Function

The solid-state relay PH 9270 monitors with applied auxiliary voltage (A3+/A2) the load voltage and the load current. On broken load circuit, deviations of the load current from setting value or defective semiconductor an alarm output is controlled. The failure state is indicated on an 2-color LED (see Function Diagrams).

The PH 9270 with 2 antiparallel connected thyristors switches at zero crossing. When connecting the control voltage the semiconductor is switched on with the next zero crossing of the sinusoidal voltage. After disconnecting the control voltage the semiconductor switches off with the next zero crossing of the load current.

As option the PH 9270 is available with heat sink for DIN rail mounting and immediately "ready to use". In addition the heat dissipation is optimised.

Normal operation and failure status

Over- / Undercurrent detection variant /000

Undercurrent detection variant /001

Overrcurrent detection variant /002

Technical Data

Output

Load voltage AC [V]:
Frequency range [Hz]:
Load current [A], (AC 51):
Load limit integral $\mathrm{I}^{2 t}\left[\mathrm{~A}^{2} \mathrm{~s}\right]$:
200 ... 480

Max. overload current [A] $\mathrm{t}=10 \mathrm{~ms}$: 600; 1150*)
period. underload current $[\mathrm{A}] \mathrm{t}=1 \mathrm{~s}$: $120 ; 150$ *)
Forward-voltage [V]
at nominal curren: 1.4
Off-state voltage $[\mathrm{V} / \mu \mathrm{s}]$: $\quad 500$
Rate of rise of current $[\mathrm{A} / \mu \mathrm{s}]$:
Measuring range:
Response value:
Hysteresis:
Themperature Data
Thermal resistance
junction - housing [K/W]: 0.5
Thermal resistance
housing - ambient [K/W]: 12
Junction temperature $\left[{ }^{\circ} \mathrm{C}\right]: \quad \leq 125$
*) variant / 1 _ _
Alarm Output
Auxiliary supply A3+/A2 [V]:
max. input current [mA]:
PNP transistor outputs
max. output current [mA]:
Output voltage
(open) [V]:
(closed) [V]:
Time delay [ms]:
20 ... 32 (DC)
15 bei 24 V DC

100

Control Circuit

Control voltage A1+/A2 [V]:
Switch off voltage [V]: max. input current [mA]:
Turn-on delay [ms]:
Turn-off delay [ms]:

General Data

Operating mode:
Temperature range
operation:
storage:
Clearance and creepage

distances:

rated impulse voltage /
pollution degree:

EMC:

Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:

Degree of protection
Housing:
Terminals:
Vibration resistance:

Housing material

Base plate:
Potting compound:
Mounting screws:

20 ... 32 (DC)
0 ... 5 (DC)
10 at 24 V DC
$5+1 / 2$ Periode
$20+1 / 2$ Periode

Continuous operation
$-20 \ldots 40^{\circ} \mathrm{C}$

- $20 \ldots 80^{\circ} \mathrm{C}$
$6 \mathrm{kV} / 3 \quad$ IEC/EN 60 664-1
IEC/EN 61 000-6-4, IEC/EN 61 000-4-1
8 kV air / 6 kV contactIEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$2 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

1 kV
2 kV
IEC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
Limit value class A^{*}
*) The device is designed for the usage under industrial conditions
(Class A, EN 55011)
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated To avoid this, appropriate measures have to be taken.
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529

Amplitude 0.35 mm
Frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60-068-2-6
Fiberglass reinforced polycarbonate
Flame resistant: UL 94 V0
Aluminum, copper nickle-plated
Polyurethane
M $5 \times 8 \mathrm{~mm}$

Technical Data

Fixing torque:
Connections control input:
Fixing torque:
Wire cross section:
Connections load circuit:
Fixing torque:
Wire cross section:
Connections
monitoring circuit:

Nominal insulation voltage
Control circuit - load circuit:
Load circuit - base plate:
Overvoltage category:
Weight
without heat sink:
PH 9270.91/_ _ _/01:
PH 9270.91/_-_-/02:
2.5 Nm

Mounting screws M3 Pozidriv 2 PT
0.5 Nm
$1.5 \mathrm{~mm}^{2}$ Litze
Mounting screws M4 Pozidriv 1 PT
1.2 Nm
$10 \mathrm{~mm}^{2}$ wire
Weidmüller - Omnimate Range
connecting pair BL 3.50/03
(included in delivery)
$4 \mathrm{kV}_{\text {eff }}$
$4 \mathrm{kV}_{\text {eff. }}$
II
approx. 100 g
approx. 530 g
approx. 650 g

Dimensions

Width x height x depth
without heat sink:
$45 \times 58 \mathrm{x} 35 \mathrm{~mm}$
PH 9270.91/_ _ _ $01: \quad 45 \times 80 \times 127 \mathrm{~mm}$
PH 9270.91/_ _ / $02: \quad 45 \times 100 \times 127 \mathrm{~mm}$

Accessories

PH 9260-0-12:
Graphite foil $55 \times 40 \times 0.25 \mathrm{~mm}$ to be fitted between device and heat sink, for better heat transmission Article number: 0058395

Standard Type

PH 9270.91 AC 200 ... 480 V 40 A DC 20 ... 32 V
Article number: 0060425

- Load voltage:
- Load current:
- Auxiliary voltage:
- Alarm output:
- Monitoring:
- Width:

AC 200 ... 480 V
40 A
DC 20 ... 32 V
PNP, closed circuit operation
Under- and overcurrent
45 mm

Variants

PH 9270.91
\(\left.\begin{array}{rl}0= \& without heat sink

1= \& with heat sink 1.5 \mathrm{~K} / \mathrm{W}

2= \& with heat sink 0.95 \mathrm{~K} / \mathrm{W}\end{array}\right\}\)| Control via A1/A2 |
| :--- |
| $0=$ |

Ordering example for variants

Setting Facilities

Potentiometer to adjust tripping point in the range of 0.5 A up to nominal current.

Setting and Adjustment

Setting for the standard type (over- and undercurrent)

When the SSR is activated to pass the normal load current, start turning the setting knob fully anticlockwise (Alarm LED = Red), then begin to turn it clockwise until the Alarm LED changes to Green. Note the knob setting. Keep turning the knob clockwise until the Alarm LED changes to Red again. Note the knob setting. Take the average of these two settings and set the knob at this value. The SSR is now set up to detect over- and undercurrents of $\pm 20 \%$. The LED should change to Green.

Setting for variant /_01 (undercurrent)

When the SSR is activated to pass the normal load current, start turning the setting knob fully clockwise (Alarm LED = Red), then begin to turn it anticlockwise until the Alarm LED turns Green. The alarm current equals the load current. Note the setting and turn the knob by 10% below the previous setting. The SSR is now set up with the necessary margins to prevent false alarms due to line voltage fluctuations. The LED should remain Green.

Setting for variant /_02 (overcurrent)

When the SSR is activated to pass the normal load current, start turning the setting knob fully anticlockwise (Alarm LED = Red), then begin to turn it clockwise until the Alarm LED turns Green. The alarm current equals the load current. Note the setting and turn the knob by 10\% above the previous setting. The SSR is now set up with the necessary margins to prevent false alarms due to line voltage fluctuations. The LED should remain Green.

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current must be dissipated by a suitable heat sink. It is imperative that the junction temperature of the semiconductor is maintained for all potential environmental temperatures of under $125^{\circ} \mathrm{C}$. For this reason, it is important to keep the thermal resistance between the base plate of the solid-state relay and the heat sink to a minimum.
To protect the solid-state relay effectively from excess heating, a thermally conducting paste or a graphit gasket (see Accessories) should be applied before installation to the base plate of the heat sink between solid-state relay and heat sink.
From the table below, select a suitable heat sink with the next lowest thermal resistance. Thus, it is ensured that the maximum junction temperature of $125^{\circ} \mathrm{C}$ is not exceeded. The load current in relation to the environmental temperature can be seen from the table.

Selection of a Heat Sink						
Load current (A)	PH $9270 \quad 40 \mathrm{~A}$Thermal resistance (K/W)					
40	1.2	1.0	0.9	0.7	0.5	0.3
35	1.5	1.3	1.0	0.9	0.7	0.5
30	1.9	1.6	1.4	1.1	0.9	0.7
25	2.4	2.0	1.8	1.5	1.2	0.9
20	3.0	2.7	2.4	2.0	1.7	1.3
15	4.4	3.9	3.4	2.9	2.5	2.0
10	6.9	6.0	5.4	4.7	4.0	3.3
5	14.0	12.9	11.5	10.0	8.6	7.2
	20	30	40	50	60	70
	Ambient-temperature (${ }^{\circ} \mathrm{C}$)					

Application Example

POWERSWITCH
Solid-State Relay / - Contactor

PH 9270.91/003 DC 0 ... 10 V

Connection Terminal
Terminal designation Signal designation A1+, A2 Control input A3 + , A2 Auxiliary supply, load current measurement V $_{\text {out }}$ Analogue output L1 Network T1 Load output

Your Advantages

- Free from wearing, noiseless, economic
- High productivity by integrated monitoring functions
- Accurate AC / DC measurement up to 45 A
- Analogue output for easy working with signals to PLC or displays
- excellent EMC- performance, because of switching at zero crossing
- As option protection against thermal overload

Features

- AC solid-state relay /-contactor with load current measurement
(runs value)
- Analogue output DC $0 \ldots 10 \mathrm{~V}$
- According to IEC/EN 60947-4-3
- Nominal voltage up to AC 480 V
- Load current up to 45 A, AC-51
- Switching at zero crossing
- DCB technology (direct bonding method) for excellent heat transmission properties
- LED indicator for control
- As option with optimized heat sink, for DIN rail mounting
- Width: 45 mm

Approvals and Markings

Applications

The solid-state relay switches at zero crossing and with its analogue output $0 \ldots 10 \mathrm{~V}$. It suitable for heating applications where failures must be detected as early as possible. It allows a continuous monitoring of the load circuit and offers many solutions where fast and silent switching actions are required e.g. in plastic molding and rubber processing machines as well as in thermal forming and packaging machines and also in food industry.

Function

When voltage is applied to A3+/A2 the solid-state relay PH 9270 monitors continuously the load current and transmits it to a proportional analogue output signal of either $0 \ldots 10 \mathrm{~V}$. This signal can be easily monitored by a PLC or display module with analogue input.

The PH 9270 with 2 antiparallel connected thyristors switches at zero crossing. When connecting the control voltage the solid-state is switched on with the next zero crossing of the sinusoidal voltage. After disconnecting the control voltage the solid-state switches off with the next zero crossing of the load current.

As option the PH 9270 is available with heat sink for DIN rail mounting and immediately "ready to use". In addition the heat dissipation is optimised.

Indication

The LED „A1/A2" shows the state of the control input yellow: controlled solid-state relays off: not controlled solid-state relays

Notes

Overtemperature protection

As option, the solid-state relay has an overtemperature protection to monitor the temperature of the heat sink. For this purpose, a thermal switch (NC contact) can be inserted into the respective pocket at the bottom of the semiconductor relay. As soon as the temperature of the heat sink exceeds for example $100^{\circ} \mathrm{C}$, the thermal switch opens. For thermal protection of the solid-state relay, a thermal switch of UCHIYA type UP62-100 can beinstalled.

Technical Data

Output

Load voltage AC [V]:
Frequency range [Hz]:
Load current
measuring range $[A],(A C-51)$:
Min. load current [A]:
Load limit integral $\mathrm{I}^{2 \mathrm{t}}\left[\mathrm{A}^{2} \mathrm{~s}\right]$:
Load limit integral ${ }^{2 t}\left[\mathrm{~A}^{2}\right.$ s]: 1800; 6600*)
Max. overload current $[A] \mathrm{t}=10 \mathrm{~ms}$: 600; 1150*)
Period. overload current [A] $=1 \mathrm{~s}: 120 ; 150$ *)
Forward-voltage [V]

at at nominal current:	1.2	1.4
Peak reverse voltage [V]:	$800(24 \ldots 240$ VAC $), 1200$ (48 ... 480 VAC)	

Off-state voltage [V/ $\mathrm{\mu s}$]:
Rate of rise of current [A/us]:
Residual current at off state
at nominal voltage
and nominal frequency $[\mathrm{mA}]$: ≤ 1
Themperature Data
Thermal resistance

junction - housing $[\mathrm{K} / \mathrm{W}]:$	0.6	0.5
Thermal resistance		

housing - ambient [K/W]: 12
Junction temperature $\left[{ }^{\circ} \mathrm{C}\right]: \quad \leq 125$
*) variant / 1 _
Control Circuit

Control voltage A1+/A2:	$20 . .32 \mathrm{~V}$ DC
Max. input current [mA]:	10 at 24 V DC
Analogue output 0 ... 10 V	
Operation voltage A3+/A2:	$18 . .32 \mathrm{~V}$ DC
Min. input current [mA]:	5 (dependent to load on analogue output)
Output voltage $\mathrm{V}_{\text {out }}$:	10 V equivalent of measuring range (e.g. 25 A)
Min. load resistance [Ω]:	300
Min. measuring current:	1% of measuring range
Delay of measurement tr [ms]:	< 120
Delay of measurement tf [ms]:	< 300
Measuring accuracy:	$\pm 5 \%$ of measuring range (nominal current)
Max. cable length [m]:	10 (twisted and shielded)

Max. cable length [m]:

General Data

Operating mode:

Temperature range

operation:
storage:
Clearance and creepage
distances:
rated impulse voltage /
pollution degree:
EMC:
Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply L1, T1: wires A1, A2 and ground: measuring output and ground: wires L1, T1 and ground:
HF-wire guided:

Continuous operation

- 20 ... $40^{\circ} \mathrm{C}$
- $20 \ldots 80^{\circ} \mathrm{C}$
$6 \mathrm{kV} / 3$
IEC/EN 60 664-1 IEC/EN 61 000-6-4, IEC/EN 61 000-4-1 8 kV air / 6 kV contactIEC/EN 61 000-4-2 $10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3 $2 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5 IEC/EN 61 000-4-5
IEC/EN 61 000-4-5 IEC/EN 61 000-4-6

Technical Data

Degree of protection

 Housing: TerminalsVibration resistance:
Housing material
Base plate:
Potting compound:
Mounting screws:
Fixing torque:
Connections control circuit:
Fixing torque:
Wire cross section:
Connections load circuit:
Fixing torque:
Wire cross section:
Connections
monitoring circuit:

Nominal insulation voltage
Control circuit - load circuit:
Load circuit - base plate:
Overvoltage category:
Weight
without heat sink:
PH 9270.91/_ _ _ /01:
PH 9270.91/_-_- /02:

Limit value class A^{*}
*) The device is designed for the usage under industrial conditions
(Class A, EN 55011)
When connected to a low voltage
public system (Class B, EN 55011)
radio interference can be generated.
To avoid this, appropriate measures have to be taken.

IP 40

IEC/EN 60529
IP 20
IEC/EN 60529
Amplitude 0.35 mm
Frequency 10 ... 55 Hz , IEC/EN 60-068-2-6
Fiberglass reinforced polycarbonate
Flame resistant: UL 94 V0
Aluminum, copper nickle-plated
Polyurethane
M $5 \times 8 \mathrm{~mm}$
2.5 Nm

Mounting screws M3 Pozidriv 1 PT
0.5 Nm
$1.5 \mathrm{~mm}^{2}$ solid
Mounting screws M4 Pozidriv 2 PT
1.2 Nm
$10 \mathrm{~mm}^{2}$ solid
Weidmüller - Omnimate Range
connecting pair BL 3.50/03
(included in delivery)
$4 \mathrm{kV}_{\text {eff }}$
$4 \mathrm{kV}_{\text {eff. }}^{\text {eff }}$
II
approx. 110 g
approx. 540 g
approx. 650 g

Dimensions

Width x height x depth without heat sink:
$45 \times 59 \times 32 \mathrm{~mm}$
PH 9270.91/_ _ _ / 01 :
PH 9270.91/_ _ _ /02:
$45 \times 80 \times 124 \mathrm{~mm}$
$45 \times 100 \times 124 \mathrm{~mm}$

Accessories

PH 9260-0-12:

Graphite foil $55 \times 40 \times 0.25 \mathrm{~mm}$ to be fitted between device and heat sink, for better heat transmission. Article number: 0058395

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current must be dissipated by a suitable heat sink. It is imperative that the junction temperature of the semiconductor is maintained for all potential environmental temperatures of under $125^{\circ} \mathrm{C}$. For this reason, it is important to keep the thermal resistance between the base plate of the semiconductor relay and the heat sink to a minimum.
To protect the solid-state relay effectively from excess heating, a thermally conducting paste or a graphit gasket (see Accessories) should be applied before installation to the base plate of the heat sink between semiconductor relay and heat sink.

From the table below, select a suitable heat sink with the next lowest thermal resistance. Thus, it is ensured that the maximum junction temperature of $125^{\circ} \mathrm{C}$ is not exceeded. The load current in relation to the environmental temperature can be seen from the table.

Selection of a Heat Sink						
Load current (A)	PH 927025 A Thermal resistance (K/W)					
25.0	2.8	2.5	2.1	1.8	1.5	1.1
22.5	3.2	2.8	2.5	2.1	1.7	1.3
20.0	3.7	3.3	2.8	2.4	2.0	1.6
17.5	4.3	3.8	3.4	2.8	2.4	1.9
15.0	5.1	4.6	4.0	3.5	2.9	2.4
12.5	6.3	5.6	5.0	4.3	3.6	2.8
10.0	8.0	7.2	6.4	5.6	4.7	3.9
7.5	11.0	9.9	8.7	7.6	6.5	5.4
5.0	16.8	15.0	13.5	12.0	10.0	8.5
2.5	-	-	-	-	21.0	17.6
	20	30	40	50	60	70
Ambient-temperature (${ }^{\circ} \mathrm{C}$)						

Load current (A)	PH 9270 45 A Thermal resistance (K/W)					
$\mathbf{4 5}$	1.0	0.9	0.7	0.5	0.4	0.2
$\mathbf{4 0}$	1.2	1.0	0.9	0.7	0.5	0.3
$\mathbf{3 5}$	1.5	1.3	1.0	0.9	0.7	0.5
$\mathbf{3 0}$	1.9	1.6	1.4	1.1	0.9	0.7
$\mathbf{2 5}$	2.4	2.0	1.8	1.5	1.2	0.9
$\mathbf{2 0}$	3.0	2.7	2.4	2.0	1.9	1.3
$\mathbf{1 5}$	4.4	3.9	3.4	2.9	2.5	2.0
$\mathbf{1 0}$	6.9	6.0	5.4	4.7	4.0	3.3
$\mathbf{5}$	14.0	12.9	11.5	10.0	8.6	7.2
	$\mathbf{7 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient-temperature (${ }^{\circ} \mathbf{C}$)					

Standard Type

PH 9270.91/003 AC 24 ... 240 V 25 A DC 0 ... 10 V
Article number: 0062432

- Load voltage: AC 24 ... 240 V
- Load current / measuring range: 25 A
- Analogue output: DC $0 \ldots 10 \mathrm{~V}$
- Width: 45 mm

Variants

Ordering example for variants

Application Example

Product Description

The solid-state relay PI 9260 was developed for switching resistive and inductive three-phase A.C. current loads, and therefore serves as a replacement for an electronic contactor. Both 2-phase and 3-phase controlled versions are available. The DCB technology (direct copper bonding) ensures very good thermal transmission, so that high load currents are possible. The solid-state relay can be mounted on a variety of cooling surfaces. The device is also available as a ready-to-use version with a pre-dimensioned heat sink. This can simply be snapped onto a wide DIN rail. An LED display signals the status of the control input.

Your Advantages

- High switching frequency and long life
- With heat sink for DIN rail mounting
- Silent vibration and shock resistance
- Providing outstanding EMC properties

Features

- Three Phase AC solid-state contactor
- Meets generally the requirements of IEC/EN 60947-4-3
- Zero cross or immediate switching
- 2 anti-parallel thyristors for each pole
- Direct copper bonded (DCB) technology
- Self-lifting box contact terminals
- Peak reverse voltage up to $\pm 1600 \mathrm{Vp}$
- Wide range AC and DC input control voltage
- Delivered with integrated heat sink for DIN rail mounting
- IP20 Touch protection

Approvals and Markings

Applications

Solid state relays switching at zero crossing:

For frequent no-wear and no-noise switching of:

- heating systems
- cooling systems
- valves
- lighting systems

The solid-state relay switches at zero crossing and is suitable for many applications e.g. extrusion machines for plastic and rubber, packaging machines, solder lines, machines in food industry.

Function Notes

EMC disturbance during operation has to be reduced by corresponding measures and filters. If several solid-state relays are mounted together sufficient cooling and ventilation has to be provided.

Notes

Depending on the application it may be useful to protect the solid-state relay with special superfast semiconductor fuses against shortcircuit.

Without heat sink

The solid-state relay can be mounted on existing cooling surfaces. Depending on the load, sufficient ventilation has to be provided.

With heat sink

For optimised heat dissipation the solid-state relay can be delivered with special dimensioned heat sinks. Depending on the ambient conditions and the load this helps to select the correct solid-state relay and heat sink. The heat sinks can be clipped on DIN-rail.

Circuit Diagrams

PI 9260.92

PI 9260.93

Connection Terminals
Terminal Designation Signal Designation A1 (+) + / L A2 $-/$ N L1, L2, L3 Mains connection T1, T2, T3 Load output

Function

The PI 9260 range of three phase AC solid-state relay, better known as Solid-state relay (SSR) is designed with two anti-parallel thyristors for each pole and mounted on a direct copper bonded (DCB) substrate ensuring a high degree of reliability and robustness. The SSR's triggering circuit can be configured to switch resistive loads or inductive loads. Its fast response, high vibration and shock resistance, high current surge capabilities, low electromagnetic interference together with its inherent long life makes the SSR the obvious choice for many applications. Applications would be for heating and cooling systems, lighting displays, process control, plastic injection machines, motorised valves and many more uses.
Two modes of switching are available for the PI9260 range; the zero-cross switching and instant-on switching (also known as random switching). Zero-cross switching is the preferred mode, because the switching of the relay is synchronised with the mains voltage so that the switching is done at the point where the voltage across the relay is nearly zero. This reduces the electrical switching noise. Due to its low input current requirements the relay can be directly operated from most of the logic systems and computer interfaces. An LED indication shows when the relay is activated.

Two-phase controlled versions - PI 9260.92

In many three-phase applications where the neutral connection is not present in either wye or delta circuits, it is possible to switch on and off loads with only two of the three phases. By means of an internal shunted middle phase, the PI 9260.92 provides all the three phases to the load.
Because only two phases are being switched, the internal power loss is reduced and hence more current can be accommodated for a given heatsink. It has also the advantage of using a smaller heat sink for the same current when compared to a three-switched phase contactor.

Three-phase controlled version PI 9260.93

This version is used in three-phase applications where all phases have to be switched on and off due to system requirements or in applications having wye connected loads with a neutral conductor. Since the SSR dissipates about 1W per ampere of load current, it is of great importance that an effective means of removing heat from the SSR is provided. Proper choice of heat sink is essential to fully utilise the SSR's current capability for a given ambient temperature. A well ventilated cabinet or panel is recommended. If this point is overlooked overheating will result, causing the SSR to lose control or be permanently damaged. The ratings listed below are valid only when the SSR is mounted alone. If more than one SSR is mounted side by side on the DIN rail then the current derating is necessary to keep the working temperature within acceptable limits. As a rule of thumb, 25% current derating is normally adequate. It is recommended that the spacing between two adjacent SSRs should be at least 30 mm .

Control Circuit

Control voltage range [V]:	$\begin{gathered} \text { DC } \\ 10 \ldots 32 \end{gathered}$	$\begin{gathered} A C \\ 100 \ldots 230 \end{gathered}$
Min. Pick-up voltage [V]:	8,0	80
Max. Drop out voltage [V]:	3.0	25
Max. input current [mA]:	12	20 at 230 V AC
Response time - turn on [ms]:	$\leq 1.0+1 / 2$ cycle *	$\leq 10+1 / 2$ cycle* *
Response time - turn off [ms]:	$\leq 1.0+1 / 2$ cycle *	$\leq 35+1 / 2$ cycle *

*) $1 / 2$ cycle delay only when switching at 0 -crossing, at instantaneous switching the delay $=0$

Output

Load voltage AC [V]:	$24 \ldots 230$	$48 \ldots 480$	$48 \ldots 600$
Peak reverse voltage [V]:	650	1200	1600
Frequency range [Hz]:	$47 \ldots 63$		

Maximum Rated Operational current per pole at $40^{\circ} \mathrm{C}[\mathrm{A}]$ AC 51: AC 53a: Maximum Rated Operational current at $40^{\circ} \mathrm{C}$ mounted on /06 heat sink ${ }^{2}$ [A] AC 51: AC 53a:	$\begin{gathered} 20 \\ 5 \end{gathered}$ $\begin{gathered} 3 \times 20 / 2 \times 20 \\ 3 \times 5 / 2 \times 5 \end{gathered}$	$\begin{gathered} 30 \\ 8 \\ \\ 3 \times 20 / 2 \times 30 \\ 3 \times 8 / 2 \times 8 \end{gathered}$	$\begin{gathered} 50 \\ 12 \\ \\ \\ 3 \times 20 / 2 \times 30 \\ 3 \times 12 / 2 \times 12 \end{gathered}$	$\begin{gathered} 60 \\ 15 \\ \\ 3 \times 20 / 2 \times 30 \\ 3 \times 15 / 2 \times 15 \end{gathered}$	$\begin{gathered} 60 \\ 20 \\ \\ 3 \times 20 / 2 \times 30 \\ 3 \times 20 / 2 \times 20 \end{gathered}$	$\begin{array}{\|c} 60^{11} \\ 30 \\ \\ 3 \times 20 / 2 \times 30^{11} \\ 3 \times 20 / 2 \times 30 \end{array}$
Max. overload current [A]. $\mathrm{t}=10 \mathrm{~ms}$:	≤ 300	≤ 400	≤ 620	≤ 1050	≤ 1150	≤ 1900
Load limit integral $\mathrm{I}^{2 t}\left[\mathrm{~A}^{2} \mathrm{~s}\right]$:	450	800	1900	5500	6600	18000
Leakage current in off state [mA]	≤ 1.5					
On-state-voltage [V] at nominal current:	1.0	1.1	1.1	1.1	1.1	1.1
Off-state voltage [V/ $\mu \mathrm{s}$]:	200	1000	1000	1000	1000	1000
Rate of rise of current $[\mathrm{A} / \mu \mathrm{s}]$:	100	100	150	150	150	150

${ }^{1)}$ Only available in 2 switched-pole versions
${ }^{2)}$ Current derating factors for heat sink $/ 06$ above $40^{\circ} \mathrm{C}$: Three phase controlled versions $=0.32 \mathrm{~A} / \mathrm{K}$; Two phase controlled versions $=0.47 \mathrm{~A} / \mathrm{K}$

Thermal Data - Solid-state relay -

Thermal resistance junction-ambient [K/W]:	13					
Thermal resistance junction housing [K/W]:	0.6	0.6	0.5	0.35	0.3	0.3
Junction temperature [${ }^{\circ} \mathrm{C}$]:	≤ 125					

General Technical Data

Operating mode:

Continuous operation
(Current reduction above $40^{\circ} \mathrm{C}$)
Temperature range operation:
storage:
Relative air humidity:
Altitude:
Clearance and creepage

distances

rated impulse voltage / pollution degree:
Over voltage category: EMC:
Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltages
Control circuit between A1 / A2: 1 kV
between output and ground: 2 kV
HF-wire guided
Interference suppression:
6 kV / 2
III
IEC/EN 61 000-6-4, IEC/EN 61 000-4-1
8 kV air / 6 kV contact IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3
2 kV IEC/EN 61 000-4-4

2 kV
10 V
Limit value class A^{*}

Degree of protection:
Vibration resistance:
Housing material:

Base plate:

Mounting screws:
Fixing torque:

Connections load circuit:

Fixing torque:
Wire cross section:
*) The device is designed for the usage
under industrial conditions
(Class A, EN 55011)
When connected to a low voltage
public system (Class B, EN 55011)
radio interference can be generated.
To avoid this, appropriate measures have to be taken.
IP 20
IEC/EN 60529
$2 \mathrm{~g} \quad$ IEC/EN 60 068-2-6
PBT/PC flame resistant; UL 94 V0
Nickel plated aluminium
$\mathrm{M} 4 \times 20 \mathrm{~mm}$ (with conical and plain washers) 1.8 Nm

Mounting screws M4 Pozidrive PZ 2
1.2 Nm
$2 \times 1.5 \ldots 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$ solid oder
$2 \times 1.0 \ldots 2.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
$2 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$ stranded wire with sleeve $1 \times 10 \mathrm{~mm}^{2}$ stranded wire with sleeve
Connections control circuit:
Fixing torque:
Wire cross section:

Nominal insulation voltage

Control circuit - load circuit:
Load circuit - base plate:
Overvoltage category:
Weight
PI9260.9X/_ _ : 268 g
PI9260.9X/_ _ /06: 970 g

Dimensions

Width x height x depth:

Standard Type

PI 9260.92/000/06 AC $48 \ldots 480 \mathrm{~V} 2 \times \mathrm{AC} 30 \mathrm{~A}$ DC $10 \ldots 32 \mathrm{~V}$

Article number:

- Load voltage:
- Load current AC-51:
- Load current AC-53a:
- Control voltage:
- With heat sink 0.75 K/W
- Width:

PI 9260.93/000/06 AC 48
Article number:

- Load voltage:
- Load current AC-51:
- Load current AC-53a:
- Control voltage:
- With heat sink 0.75 K/W
- Width:

0067462
AC 48 ... 480 V
$2 \times 30 \mathrm{~A}$
$2 \times 12 \mathrm{~A}$
DC 10 ... 32 V
67.5 mm
$480 \mathrm{~V} 3 \times \mathrm{AC} 20 \mathrm{~A}$ DC $10 \ldots 32 \mathrm{~V}$
0067464
AC 48 ... 480 V
$3 \times 20 \mathrm{~A}$
3×12 A
DC $10 \ldots 32 \mathrm{~V}$
67.5 mm

Variants

Ordering example for variants

Further variants

Pl9260.92/200/06 AC $48 \ldots 480 \mathrm{~V} 2 \times \mathrm{AC} 30 \mathrm{~A} \mathrm{AC} 100 \ldots 230 \mathrm{~V}$	
Article number:	0067688
Load current AC-51:	$2 \times 30 \mathrm{~A}$
Load current AC-53a:	$2 \times 30 \mathrm{~A}$

PI9260.93/000/06 AC 48 ... 480V $3 \times$ AC 20 A AC 100 ... 230 V
Article number: 0067687
Load current AC-51: $3 \times 20 \mathrm{~A}$
Load current AC-53a: 3×12 A
PI9260.93/100/06 AC 48 ... 480V $3 \times$ AC 20 A DC 10 ... 32 V
Article number: 0067686
Load current AC-51: $3 \times 20 \mathrm{~A}$
Load current AC-53a: 3×20 A
Other variants on request.

Notes on Sizing for Selection of a Heat Sink

The heat generated by the load current flowing through the SSR has to be removed by a suitably chosen heat sink. It is essential that the junction temperature of the semiconductor is kept below $125^{\circ} \mathrm{C}$ for all possible ambient temperatures. It is of paramount importance that the thermal resistance between the SSR base plate and the heat sink is kept to a minimum. A small amount of thermally conductive compound (or a similar interface material) should be applied to the base plate before assembly to the heat sink. The tables shown below can be used as a guide to select a suitable heat sink for various load currents and ambient temperatures situations.

Load current (A)	3 Phase SSR Rating 20A/pole Thermal resistance (K/W)					
$\mathbf{2 0}$	1.5	1.3	1.1	1.0	0.8	0.6
$\mathbf{1 8}$	1.7	1.5	1.3	1.1	0.9	0.8
$\mathbf{1 6}$	2.0	1.7	1.5	1.3	1.1	0.9
$\mathbf{1 4}$	2.3	2.1	1.8	1.6	1.3	1.1
$\mathbf{1 2}$	2.8	2.5	2.2	1.9	1.6	1.3
$\mathbf{1 0}$	3.5	3.2	2.8	2.4	2.1	1.7
$\mathbf{8}$	-	4.1	3.6	3.2	2.7	2.3
$\mathbf{6}$	-	-	-	4.4	3.8	3.2
$\mathbf{4}$	-	-	-	-	-	-
$\mathbf{2}$	-	-	-	-	-	-
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature $\left({ }^{\circ} \mathbf{C} \mathbf{~)}\right.$					

c)

Load current (A)	3 Phase SSR Rating 50A/pole Thermal resistance (K/W)					
$\mathbf{5 0}$	0.4	0.3	0.2	0.2	0.1	-
$\mathbf{4 5}$	0.5	0.4	0.3	0.3	0.2	0.1
$\mathbf{4 0}$	0.6	0.5	0.4	0.4	0.3	0.2
$\mathbf{3 5}$	0.7	0.6	0.5	0.5	0.4	0.3
$\mathbf{3 0}$	0.9	0.8	0.7	0.6	0.5	0.4
$\mathbf{2 5}$	1.2	1.0	0.9	0.8	0.6	0.5
$\mathbf{2 0}$	1.6	1.4	1.2	1.1	0.9	0.7
$\mathbf{1 5}$	2.3	2.1	1.8	1.6	1.3	1.1
$\mathbf{1 0}$	3.7	3.3	2.9	2.5	2.2	1.8
$\mathbf{5}$	-	-	-	-	4.5	4.0
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C}$)					

d)

Load current (A)	3 Phase SSR Rating 60A/pole Thermal resistance (K/W)					
$\mathbf{6 0}$	0.3	0.3	0.2	0.2	0.1	-
$\mathbf{5 2}$	0.4	0.3	0.3	0.2	0.2	0.1
$\mathbf{4 8}$	0.5	0.4	0.4	0.3	0.2	0.2
$\mathbf{4 2}$	0.6	0.5	0.5	0.4	0.3	0.2
$\mathbf{3 6}$	0.8	0.7	0.6	0.5	0.4	0.3
$\mathbf{3 0}$	1.0	0.9	0.8	0.7	0.6	0.4
$\mathbf{2 4}$	1.3	1.2	1.0	0.9	0.7	0.6
$\mathbf{1 8}$	2.0	1.8	1.6	1.4	1.1	0.9
$\mathbf{1 2}$	3.0	2.8	2.5	2.2	1.9	1.6
$\mathbf{6}$	-	-	-	-	4.2	3.5
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	50	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C}$)					

e)

Load current (A)	2 Phase SSR Rating 20A/pole Thermal resistance (K/W)					
$\mathbf{2 0}$	2.2	1.9	1.7	1.5	1.2	1.0
$\mathbf{1 8}$	2.5	2.3	2.0	1.7	1.4	1.1
$\mathbf{1 6}$	3.0	2.6	2.3	2.0	1.7	1.4
$\mathbf{1 4}$	3.5	3.1	2.8	2.4	2.0	1.7
$\mathbf{1 2}$	4.3	3.8	3.4	2.9	2.5	2.0
$\mathbf{1 0}$	5.3	4.7	4.2	3.7	3.1	2.6
$\mathbf{8}$	-	6.2	5.5	4.8	4.1	3.4
$\mathbf{6}$	-	-	-	6.6	5.7	4.8
$\mathbf{4}$	-	-	-	-	-	-
$\mathbf{2}$	-	-	-	-	-	-
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C} \mathbf{~)}$					

f)

Load current (A)	2 Phase SSR Rating 30A/pole Thermal resistance (K/W)					
$\mathbf{3 0}$	1.0	0.9	0.8	0.6	0.5	0.3
$\mathbf{2 7}$	1.3	1.0	0.9	0.8	0.6	0.4
$\mathbf{2 4}$	1.5	1.3	1.1	1.0	0.8	0.6
$\mathbf{2 1}$	1.9	1.7	1.4	1.2	1.0	0.8
$\mathbf{1 8}$	2.3	2.1	1.8	1.5	1.3	1.0
$\mathbf{1 5}$	3.0	2.6	2.3	2.0	1.7	1.4
$\mathbf{1 2}$	4.0	3.6	3.2	2.7	2.3	1.9
$\mathbf{9}$	5.5	5.1	4.5	3.9	3.3	2.8
$\mathbf{6}$	-	-	-	6.3	5.4	4.5
$\mathbf{3}$	-	-	-	-	-	-
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C} \mathbf{C}$					

g)

Load current (A)	2 Phase SSR Rating 50A/pole Thermal resistance (K/W)					
$\mathbf{5 0}$	0.6	0.5	0.4	0.3	0.2	0.1
$\mathbf{4 5}$	0.7	0.6	0.5	0.4	0.3	0.2
$\mathbf{4 0}$	0.9	0.8	0.6	0.5	0.4	0.3
$\mathbf{3 5}$	1.1	1.0	0.8	0.7	0.5	0.4
$\mathbf{3 0}$	1.4	1.2	1.1	0.9	0.7	0.6
$\mathbf{2 5}$	1.8	1.6	1.4	1.2	1.0	0.8
$\mathbf{2 0}$	2.4	2.0	1.9	1.6	1.4	1.0
$\mathbf{1 5}$	3.5	3.0	2.7	2.4	2.0	1.6
$\mathbf{1 0}$	5.6	5.0	4.4	3.9	3.3	2.7
$\mathbf{5}$	-	-	-	-	-	6.0
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature (${ }^{\circ} \mathbf{C} \mathbf{~)}$					

h)

Load current (A)	2 Phase SSR Rating 60A/pole Thermal resistance (K/W)					
$\mathbf{6 0}$	0.5	0.4	0.4	0.3	0.2	0.1
$\mathbf{5 2}$	0.6	0.5	0.5	0.4	0.3	0.2
$\mathbf{4 8}$	0.8	0.7	0.6	0.5	0.4	0.3
$\mathbf{4 2}$	0.9	0.8	0.7	0.6	0.5	0.4
$\mathbf{3 6}$	1.2	1.1	0.9	0.8	0.6	0.5
$\mathbf{3 0}$	1.5	1.4	1.2	1.0	0.9	0.7
$\mathbf{2 4}$	2.0	1.8	1.5	1.3	1.1	0.9
$\mathbf{1 8}$	3.0	2.7	2.4	2.1	1.7	1.4
$\mathbf{1 2}$	4.8	4.3	3.8	3.3	2.9	2.4
$\mathbf{6}$	-	-	-	-	6.3	5.3
	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$
	Ambient temperature ($\left.{ }^{\circ} \mathbf{C}\right)$					

Pl9260.93/_ _ / 00

P19260.93/ _ 106

PI9260.93/_ _ _ /16 (on request)

Typical applications

Three phase motor application

POWERSWITCH

Function Diagram

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- Switching at zero-crossing
- To reverse 3 phase asynchronuos motors up to 5.5 kW / 400 V (7.5 HP / 460 V)
- Electrical interlocking of both directions
- Temperature monitoring to protect the power semiconductors
- Measured nominal current up to 20 A
- LEDs for status indication
- Galvanic separation between control circuit and power circuit
- $45 \mathrm{~mm} ; 67.5 \mathrm{~mm} ; 112.5 \mathrm{~mm}$ width

Approvals and Markings

Function

The reversing contactor BH 9253 is used to reverse the direction of 3 -phase asynchronuos motors by switching 2 phases. An electrical interlokking disables the control of both directions at the same time. The reversing contactor has a short on and off delay time. When reversing the phases a switchover delay is guaranteed.

Temperature sensing
To protect the power semiconductors the unit incorporates temperature monitoring. When overtemperature is detected the power semiconductors swith off and an output relay as well as a red LED is activated. This state is stored. When the temperature is back to normal the semiconductors can be activated again by switching off and on the control voltage.

Indicators

yellow LED "I":
yellow LED "r":
red LED:
on, when left direction active on, when right direction active on, when overtemperature

Connection Terminal
Terminal designation Signal description A1 (I), A2 Auxiliary voltage, control anti-clockwise A3 (r), A2 Auxiliary voltage, control clockwise L1, L2, L3 Mains connection T1, T2, T3 Motor connection 11, 12, 14 Contacts output relays, active when overtemperature

Technical Data

Input
Nominal voltage
A1,A2 / A3,A2:

Voltage range:
Nominal consumption
at AC 230 V
at DC 24 V :
Nominal frequency:
Switch on delay:
Switch off delay:
Switch-over delay tu:
Permissible residual voltage:

AC/DC 24 V;
AC 110 ... 127 V, AC 220 ... $240 \mathrm{~V}, \mathrm{AC} 288 \mathrm{~V}$
AC 400 V (no UL-devices)
control voltage A1, A3 has to be connected to the same potential (see appl. example)
AC: $0.8 \ldots 1.1 U_{N}$
DC: $0.8 \ldots 1.25 \mathrm{U}_{\mathrm{N}}$
4 VA, 0.8 W
0.3 W
$50 / 60 \mathrm{~Hz}$
max. 30 ms
typically 25 ms
100 ms (other values on request)
$30 \% U_{N}$
Load Output

	unit without heat sink	with heat sink width 67.5 mm	with heat sink width 112.5 mm	
Rated continuous current $\mathrm{I}_{\mathrm{e}}{ }^{1)}$	$[\mathrm{A}]$	4	12	20
Current reduction above $40{ }^{\circ} \mathrm{C}$	$\left[\mathrm{A} /{ }^{\circ} \mathrm{C}\right]$	0.1	0.2	0.2
max. motor power at 400 V	$[\mathrm{~kW}]$	1.1	4	5.5
Nominal motor current I_{N}	$[\mathrm{A}]$	2.6	8.5	11.5
max. locked rotor motor current	$[\mathrm{A}]$	15.6	51	69
Example for max. operat. freq. at 100% duty cycle, 80% motor load, starting time $\mathrm{t}_{\mathrm{A}} 2 \mathrm{~s}$, starting current $\mathrm{I}_{\mathrm{A}}=6 \times \mathrm{I}_{\mathrm{N}}$	$[1 / \mathrm{h}]$	250	210	320
Operation mode		AC53a acc. to IEC/EN 60947-4-2		

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.

Note: \quad The max. permissible operating frequency of the motor can be less. See motor data!

Load voltage range:
Peak inverse voltage:
Frequency range:
Surge current 10 ms :
Semiconductor fuse:
Varistor voltage:
Cycle diagram to calculate the operating frequency

Formula for selection of unit and motor
$\begin{array}{ll}I_{e} \geq \frac{1}{T}\left[I_{A} t_{A}+\right. & \left.I_{B}\left(T-t_{A}\right)\right] \\ \text { Device selection } \\ I_{N}^{2} \geq \frac{1}{T}\left[I_{A}^{2} t_{A}+\right. & \left.I_{B}^{2}\left(T-t_{A}\right)\right]\end{array} \quad$ Motor selection
1200 Vp
$50 / 60 \mathrm{~Hz}$
300 A
$450 A^{2} \mathrm{~s}$
AC 510 V

$$
I_{N}^{2} \sum \frac{1}{T}\left[I_{A}^{2} t_{A}+I_{B}^{2}\left(T-t_{A}\right)\right] \quad \text { Motor selection }
$$

[^3]
Contacts

BH 9253.11: 1 changeover contact
Thermal current $I_{\text {th }}$:
Switching capacity
at AC 15
NO:
NC:
Short circuit strength
max. fuse rating:

General Data

Operating mode:

Temperature range
Operation:
Storage:
Altitude:
Clearance and creepage
distances
rated impulse voltage /
pollution degree:
EMC
Surge voltages:
HF-interference:
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages between
wires for power supply:
HF wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Load terminals:

Control terminals:

UL-Data

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.

Wire connection

Load terminals
L1, L2, L3, T1, T2, T3: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 18-8 Sol Torque 0.8 Nm AWG 18-10 Str Torque 0.8 Nm

Control terminals

A1, A2, A3, 11, 12, 14: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only,

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BH 9253.11/61 AC 220 ... 240 V 4 A 100 ms
Article number: 0064657

- Output: 1 changeover contact
- Nominal voltage U_{N} : AC $220 \ldots 240 \mathrm{~V}$
- Rated continuous current: 4 A
- Switchover delay: 100 ms
- Width:

45 mm

Ordering Example

230/400 V AC-Mains
AC 230 V control voltage

230/400 V AC-Mains
AC 400 V control voltage

230/400 V AC-Mains
AC/DC 24 V control voltage

ATTENTION!

A1 and A3 has to be connected to the same phase. The common connection is terminal A2.

Connecting a parallel loud between A1 and A2 as well as A3 and A2 is not allowed

POWERSWITCH

Circuit Diagrams

Connection Terminal
Terminal designation Signal description A1, A2 Auxiliary voltage r+ / rl- Control input clockwise l+ / rl- Control input anti-clockwise Z1 / Z2 Parameterization input measuring range via bridge X1 / X2 Parameterization input switchover delay via bridge X3 / X4 Parameterization input function via bridge L1, L2, L3 Mains connection T1, T2, T3 Motor connection 11, 12, 14 Contacts output relays, enable- / indicator contact

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- Switching at zero crossing
- To reverse 3 phase asynchronuos motors up to 5.5 kW / 400 V (7.5 HP / 460 V)
- Electrical interlocking of both directions
- Temperature monitoring to protect the power semiconductors
- Measured nominal current up to 20 A
- LEDs for status indication
- Galvanic separation between control circuit and power circuit
- With current monitor
- $45 \mathrm{~mm} ; 67.5 \mathrm{~mm} ; 112.5 \mathrm{~mm}$ width

Approvals and Markings

Function

The reversing contactor BH 9255 is used to reverse the direction of 3 -phase asynchronuos motors by switching 2 phases (L1 and L2). An electrical interlocking disables the control of both directions at the same time. The reversing contactor has a short on and off delay time. When reversing the phases a switchover delay is guaranteed.

The motor current is monitored in phase L1. If the current rises above the tripping value the device is able to switch off the motor

Function

Without bridge $x 3-x 4$ (plc control)

After connecting the power supply to A1/A2 the enabling contact 11-14 closes. The motor is now started with a positive edge of the signal on control input r+/rl- (clockwise) or l+/rl- (anti-clockwise).

The start up delay runs. If the start up delay is finished and the current is still over the adjusted value the relay contacts switch back to 11-12. This state is stored. It resets by switching off the motor on the control input.

If the motor current rises above the adjusted value during operation the time tv (switching delay) runs down. If the switching delay is finished and the current is still over the adjusted value the relay contacts switch back to 11-12. This state is stored. It resets by switching off the motor on the control input.

With bridge $\mathrm{x} 3-\mathrm{x} 4$ (preferred for manual control)

Same function as without bridge, but in addition to the relay contact 11-12 also the motor is switched off at the same time.

Bridge x1-x2: Switchover delay $t_{u} 20$ or 100 ms

Temperature sensing

To protect the power semiconductors the unit incorporates temperature monitoring. When overtemperature is detected e.g. because of reversing to often the power semiconductors swith off and an and the enabling relay switches back in position 11-12. This state is stored. When the temperature is back to normal the semiconductors can be activated again by switching off and on the control voltage.

Function Diagram

Indicators

green LED „ON"
yellow LED „r" yellowLED „!" red LED „i>"
red LED „७>" both red LEDs „i> + খ>"
on when auxiliary supply connected flushes if „t"" abläuft
on, when right direction active
on, when left direction active
on, when overtemperature and
flushes during time elaspe of „t"
on, when overtemperature
flushes if a system fault is detected.
A motor current is measured and while the semiconductors are off. The motor cannot be started.

Technical Data

Input

Load Output

	unit without heat sink	with heat sink width 67.5 mm	with heat sink width 112.5 mm
Rated continuous current $\mathrm{I}_{\mathrm{e}}{ }^{1)} \quad[\mathrm{A}]$	4	12	20
Current reduction above $40{ }^{\circ} \mathrm{C} \quad\left[\mathrm{A} /{ }^{\circ} \mathrm{C}\right]$	0.1	0.2	0.2
max. motor power at $400 \mathrm{~V} \quad[\mathrm{~kW}]$	1.1	4	5.5
Nominal motor current $\mathrm{I}_{\mathrm{N}} \quad[\mathrm{A}]$	2.6	8.5	11.5
max. locked rotor motor current ${ }^{2)}$ [A]	15.6	51	69
Example for max. operat. freq. at 100 \% duty cycle, 80 \% motor load, starting time $t_{A} 2 \mathrm{~s}$, starting current $I_{A}=6 \times I_{N}$	250	210	320
Operation mode	AC53a acc. to IEC/EN 60947-4-2		

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.
${ }^{2)}$ The max. locked rotor motor or starting current of 100 A for $1 \mathrm{~s}, 85 \mathrm{~A}$ for 2 s and 70 A for 5 s must not be exceeded.
${ }^{3)}$ At $t_{A}=1 \mathrm{~s}$
Note: \quad The max. permissible operating frequency of the motor can be less. See motor data!

Load voltage range:	AC $24 \ldots 480 \mathrm{~V}$
Peak inverse voltage:	1200 Vp
Frequency range:	$50 / 60 \mathrm{~Hz}$
Surge current $10 \mathrm{~ms}:$	350 A
Semiconductor fuse:	$610 \mathrm{~A}^{2} \mathrm{~s}$
Varistor voltage:	AC 510 V

Technical Data

Cycle diagram to calculate the operating frequency

Formula for selection of unit and motor

$$
\begin{array}{lll}
I_{e} \stackrel{!}{T}\left[I_{A} t_{A}+\right. & \left.I_{B}\left(T-t_{A}\right)\right] & \text { Device selection } \\
I_{N}^{2} \stackrel{!}{\sum} \frac{1}{T}\left[I_{A}^{2} t_{A}+\right. & \left.I_{B}^{2}\left(T-t_{A}\right)\right] & \text { Motor selection }
\end{array}
$$

I_{A} : Starting current / Blocking current
Please take into account the motor data.
Modern motors with efficiency class IE3 may have an inrush peek current of 10-12 times of the nominal motor current.

Monitoring Output

Contacts

BH 9255.11: 1 changeover contact
Thermal current $I_{t h}$:
Switching capacity
at AC 15
NO: 3 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
NC: 1 A / AC 230 V IEC/EN 60 947-5-1
Short circuit strength max. fuse rating:

General Data

Operating mode: Temperature range Operation:

Storage:
Altitude:
Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC
Surge voltages:
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages between wires for power supply:
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:

Continuous operation
$-20 \ldots+60^{\circ} \mathrm{C}$
Current reduction over $40^{\circ} \mathrm{C}$: see table
$-25 \ldots+70^{\circ} \mathrm{C}$
<2,000 m

$4 \mathrm{kV} / 2$	IEC 60 664-1
$5 \mathrm{kV} / 0.5 \mathrm{~J}$	
8 kV (air)	IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
4 kV	IEC/EN 61 000-4-4
1 kV	IEC/EN 61 000-4-5
10 V	IEC/EN 61 000-4-6
Limit value class B	EN 55 011
IP 40	IEC/EN 60 529

IP 20 IEC/EN 6052
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6
frequency 10 ... 55 Hz
20 / 040 / 04
EN 50005

Technical Data

Wire connection
Load terminals:
Control terminals:

Wire fixing:
Fixing torque:
Load terminals:
Control terminals:
Mounting:
Weight:
BH 9255 with 4 A:
BH 9255 with 12 A:
$1 \times 10 \mathrm{~mm}^{2}$ solid or
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled

BH 255 with 12 A.
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled DIN 46 228-1/-2/-3/-4

BH 9255 with 20 A:

Dimensions

Width x heigth x depth:

BH 9255 with 4 A:

BH 9255 with 12 A:
BH 9255 with 20 A:
$45 \times 84 \times 121 \mathrm{~mm}$
$67.5 \times 84 \times 121 \mathrm{~mm}$ $112.5 \times 84 \times 121 \mathrm{~mm}$

UL-Data

			it out sink		sink th mm		h sink th mm
Switching capacity Relay NO-contact NC-contact Short circuit current rating	[Vac] [Vac] [Arms]			$\begin{aligned} & 30 ; \\ & 30 ; \\ & -1 \\ & 50 \end{aligned}$			
Ambient conditions			usag used ax. cu V. The with a	at p in cir ent devic use c	$\begin{aligned} & \text { uits } \\ & 50 \end{aligned}$	degre at allo Arms be f 5 25A	2; ws a sed
Rated continuous current I_{e}	[A]						
Ambient temperature	$\left[{ }^{\circ} \mathrm{C}\right]$	40	60	40	60	40	60
max. motor power at 460 V	[HP]	1,5	0,75	5	3	7,5	5
Nominal motor current FLA (Full load current)	[A]	3,0	1,6	7,6	4,8	11	7,6
max. locked rotor motor current LRA	[A]	20	12,5	46	32	63,5	46
${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current o the unit in continuous operation.							

Wire connection
Load terminals
L1, L2, L3, T1, T2, T3:

Control terminals

A1, A2, A3, 11, 12, 14: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol Torque 0.8 Nm AWG 20-14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section. in the technical data section.

Standard Type

BH 9255.11/61 AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 4 \mathrm{~A} \quad \mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$
Artikelnummer: 0064648

- Output:
- Auxiliary voltage U_{H} :

$$
\text { AC } 230 \mathrm{~V}
$$

- Rated continuous current:
- Control input:
- Width:

$$
1 \text { changeover contact }
$$

4 A
AC/DC $80 \ldots 230 \mathrm{~V}$
45 mm

Ordering Example

Application Examples

BH 9255 with A1/A2 = AC 230 V and control input AC/DC $80 \ldots 230 \mathrm{~V}$

BH 9255 with A1/A2 = AC/DC 24 V and control input AC/DC 24 V or DC 24 V

Function Diagrams

$\mathrm{P} 1=$ minimum response value
$t_{a}=$ start up delay
$t_{V}=$ delay on energisation

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- To reverse 3 phase motors
- Electrical interlocking of both directions
- 2-phase softstart
- Active power monitoring after softstart
- Temperature monitoring of power semiconductors
- LED indicator
- Internal auxiliary voltage are made from phase voltage
- Galvanic separation of control circuit and power circuit
- Space and cost saving with 3 functions in one compact unit
- Reducing of wiring and wiring failure
- Width 90 mm

Approvals and Markings

Applications

- Reversing operation for door and gate controls, bridge drives and lifting applications with monitoring of blockage
- Conveyor systems with monitoring of blockage
- Actuating drives in process controls with blockage monitoring

Circuit Diagram

Function

The reversing contactor BI 9254 is used to reverse the direction and to monitor the effective power on 3-phase asynchronous motors. An electrical interlock blocks the simultaneous control of both directions. To monitor the effective power correctly the current in the 3 phases has to be symmetric. The monitoring function only gets active after an adjustable start up delay. The 3 phases L1, L2 and L3 are connected continuously to the unit.

Temperature monitoring

To protect the semiconductors their temperature is monitored. If overtemperature is detected, the power semiconductors switch off, the signalling relay 1 de-energises and the red LED flashes Code 1. This state is latched. After the temperature is back to normal the status can be reset by switching the control input on and off.

Softstart

Two phases are controlled by thyristors in order to let the current rise slowly and to limit it. The motor torque reacts accordingly during start-up. This allows to reduce shock and stress for the mechanical parts of the drive. Start-up time and starting torque can be set with potentiometers.

Effective load measuring

After an adjustable start up time, but at the earliest after end of ramp up time, the effective power of the connected motor is monitored. The effective power is defined as $\mathrm{P}=\mathrm{U} \times \mathrm{I} \times \cos \varphi$. The maximum motor load is adjustable with potentiometer. A yellow LED indicates overload, but only as long as the motor is actually in overload state. After an adjustable time delay of $1 . .10 \mathrm{~s}$ a relay contact switches on until the effective load drops again under the adjusted value.

Control inputs

With 2 control inputs left and right rotation is selected. When both inputs are activated the first signal will be accepted as valid. The inputs can be controlled by volt free contacts or with external DC 24 V . With activation of a control input the ramp up time and the start up delay is started again. The unit does not create any extra interlocking times for reversing operation except a short delay that is necessary to control the semiconductors. If one or both control inputs are active when applying auxiliary supply, a failure code "Control input active when unit switched on" is displayed. The Error LED flashes code 6. By disconnecting the control inputs the failure state is reset.

Monitoring relay 1 (contact 11-12-14)

The relay energises as soon as the unit is ready for operation after auxiliary supply is connected. On overtemperature, phase failure or wrong phase sequence the relay de-energises and the power semiconductor switches off.

Monitoring relay 2 (contact 21-22-24)

The relay energises, when after the adjusted time delay the effective power exceeds the setting value (energized on trip). The relay de-energises as soon as the effective power drops below the adjusted value. In the case of any other failure the relay de-energises.

Indication	
green LED ON:	permanent on- supply connected
	flashing - start up delay active
yellow LED r:	permanent on- after start clockwise
	flashing - during start clockwise
yellow LED I:	permanent on- after start anticlockwise
	flashing - during start anticlockwise
yellow LED $>\mathrm{P}_{\max }$:	permanent on- effective power overload, relay 2 energized
	flashing - delay active
red LED ERROR:	flashing - Error
	1*) - overtemperature on semiconductors
	2*) - wrong mains freqency
	3*) - incorrect phase sequence, exchange connections on L1 and L2
	4*) - phase failure
	5* - Temperature monitoring of power semiconductors defect or device temperature $<-20^{\circ} \mathrm{C}$
	6*) - control input energized on power up

$1^{*)}-6^{*)}=$ Number of flashing pulses in sequence

Setting Facilities	
Poti $M_{o n}:$	- starting torque at softstart $20 \ldots 80 \%$
Poti $t_{o n}:$	- ramp up time $1 \ldots 10 \mathrm{~s}$
Poti $t_{a}:$	- start up time delay $1 \ldots 20 \mathrm{~s}$
Poti $\mathrm{t}_{\mathrm{v}}:$	- on delay $1 \ldots 10 \mathrm{~s}$ Poti $P_{1}:$
	- response value for max. effective power $0,1 \ldots 6 \mathrm{~kW}$

The setting of the effective power is infinite adjustable on absolute scale. The most accurate setting is achieved by turning the pot slowly from min to required value without changing the turning direction.

Set-up Procedure

1. Connect motor and device according to application example. Turn potentiometer $M_{\text {on }}$ fully anticlockwise, potentiometers $t_{\text {on }}, t_{a}, t_{v}$ and $P_{\text {max }}$ fully clockwise.
2. Connect voltage and begin softstart by control of input X 2 or X 3 .

Turn potentiometer clockwise until motor starts immediately after switching on. This avoids unnecessary heating and humming of the motor.
3. Adjust the stat up time by turning $\mathrm{t}_{\text {on }}$ to the required value.

At correct setting, the motor should ramp up continuously to full speed.
4. Adjust the start up time delay with potentiometer t_{a}, time delay with potentiometer t_{v} and response value for max. effective power with potentiometer $\mathrm{P}_{\text {max }}$ to the required value.

Safety Remarks

- Never clear a fault when the device is switched on

Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards (VDE, TUV,BG).
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Technical Data

Nominal voltage L1/L2/L3:
Nominal frequency:
3 AC $400 \mathrm{~V} \pm 10 \%$
$50 / 60 \mathrm{~Hz}$ automatische Erkennung
Load Output

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation
${ }^{2)}$ The max. locked rotor motor or starting current of 100 A for $1 \mathrm{~s}, 85 \mathrm{~A}$ for 2 s and 70 A for 5 s must not be exceeded.

Note: \quad The max. permissible operating frequency of the motor can be less. See motor data!

Peak reverse voltage:	1200 V
Overvoltage limiting:	AC 510 V
Surge current $10 \mathrm{~ms}:$	300 A
Semiconductor fuse:	e.g. TRS 25R Fa. Ferraz
Leakage current in off state:	$<3 \times 5 \mathrm{~mA}$
Internal resistance	
current measuring system:	$7 \mathrm{~m} \Omega$
Starting voltage:	$20 \ldots 80 \%$
Ramp up time:	$1 \ldots 10 \mathrm{~s}$
Consumption:	3 W
Interlocking time t	
Start up delay:	50 ms
Release delay:	$\max .25 \mathrm{~ms}$
Effective power monitoring	$\mathrm{max.30ms}$
Measuring accuracy:	$\pm 4 \% \mathrm{max}$. scale value
Reaction time:	80 ms

Cycle diagram to calculate the operating frequency

Formula for selection of unit and motor

$$
\begin{array}{ll}
I_{e} \sum \frac{1}{T}\left[I_{A} t_{A}+I_{B}\left(T-t_{A}\right)\right] & \text { Device selection } \\
I_{N}^{2} \sum \frac{1}{T}\left[I_{A}^{2} t_{A}+I_{B}^{2}\left(T-t_{A}\right)\right] & \text { Motor selection }
\end{array}
$$

Inputs

Control input right, left:
Rated current
Softstart:
Softstop:
Connection:
Volt free contakt:

DC 24 V "volt free contact"
5 mA
DC $10 \ldots 30 \mathrm{~V}$
DC $0 \ldots 6 \mathrm{~V}$
polarity protected diode, overvoltage protection NO contact

Technical Data

Indicator Output

Contacts:
Thermal current $I_{t h}$:
Switching capacity
to AC 15
NO contact:
NC contact:
Elektrical life
to AC 15 at 3 A, AC 230 V :
Mechanical life:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
2×1 change over contacts 5 A

3 A / AC 230 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1

General Data

Operating mode:
Temperature range:
Clearance and creepage

distances

overvoltage category /
contamination level
Motor voltage-heat sink: $6 \mathrm{kV} / 2 \quad$ EN 50178
Motor voltage-control voltage: $4 \mathrm{kV} / 2 \quad$ EN 50178
EMC
Electrostatic discharge (ESD): 8 kV (Luftentladung) IEC/EN 61 000-4-2
Fast transients: 2 kV IEC/EN 61 000-4-4
Surge voltage
between
Continuous operation
$-20 \ldots+60^{\circ} \mathrm{C}$
Current reduction over $40^{\circ} \mathrm{C}$: see table
wires for power supply:
1 kV
betwenn wire and ground: $\quad 2 \mathrm{kV} \quad$ IEC/EN 61 000-4-5
HF-wire guided:
10 V
Radio interference:
Radio interference voltage:
Harmonics:
Degree of protection

Housing:	
Housing:	IP 40 IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529
Vibration resistance:	Amplitude $0,35 \mathrm{~mm}$ frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
Climate resistance:	$20 / 055$ / $04 \quad$ IEC/EN 60 068-1
Wire connection	
Load terminals:	$1 \times 10 \mathrm{~mm}^{2}$ solid or $1 \times 6 \mathrm{~mm}^{2}$ stranded wire with sleeve
Control terminals:	$1 \times 4 \mathrm{~mm}^{2}$ solid or $1 \times 2,5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 1,5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 2,5 \mathrm{~mm}^{2}$ stranded wire with sleeve

Wire fixing
Load terminals:

Control terminals:

Mounting:
Dimensions
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011
EN 55011
EN 61 000-3-2
IEC/EN 60529
IEC/EN 60529
Amplitude 0,35 mm
frequency 10 ... 55 Hz, IEC/EN 60 068-2-6
$1 \times 10 \mathrm{~mm}^{2}$ solid or
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2,5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 1,5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or DIN 46 228-1/-2/-3/-4

Captive plus-minus-terminal screws M4; Box terminals with self-lifting wire protection
Captive plus-minus-terminal screws M3,5; Box terminals with self-lifting wire protection
Hutschiene
IEC/EN 60715

Width \mathbf{x} height \mathbf{x} depth: $\quad 90 \times 85 \times 121 \mathrm{~mm}$
2×10^{5} switch. cycles IEC/EN 60 947-5-1 30×10^{6} switching cycles

1800 switching cycles/h
4 AgL
IEC/EN 60 947-5-1

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.
${ }^{2)}$ The max. locked rotor motor or starting current of 100 A for $1 \mathrm{~s}, 85 \mathrm{~A}$ for 2 s and 70 A for 5 s must not be exceeded.

Wire connection

Load terminals:

Control terminals:

$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 18-8 Sol Torque 0.8 Nm AWG 18-10 Str Torque 0.8 Nm
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol Torque 0.8 Nm AWG 20-14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BI 9254.383 AC 400 V $50 / 60 \mathrm{~Hz} 12 \mathrm{~A}$
Article number: 0059430

- Nominal voltage: 3 AC 400 V
- Rated continuous current:

12 A

- Control voltage:

DC 24 V or contact

- Width:

$$
90 \text { mm }
$$

Order Reference

Application Examples

BI 9254 with control input DC 24 V

BI 9254 with volt free contact

Product Description

The softstart-softstop unit provides smooth starting and stopping of 3-phase asynchronous motors. 2 phases are controlled by power semiconductors in a way that the current can rise continuously. This provides also a continuous rising motor torque. This eliminates mechanical shock while starting. After successful starting the power semiconductors are bridged with internal relay contacts. This reduces internal power dissipation. The softstop function prolongs the stop time of the motor in order to avoid a sudden stop.

Function Diagram

Your Advantages

- Simple and time-saving commissioning as well as user-friendly operation through setting via potentiometers
- Hybrid relay combines benefits of relay technology with non-wearing semiconductor technologye
- High availablility by
- Temperature monitoring of semiconductors
- High withstand voltage up to 1500 V

Features

- According to IEC/EN 60 947-4-2
- 2-phase softstart and softstop of 3-phase motors up to 4 KW
- 4 potentiometer für setting of starting torque, deceleration torque, softstart /-stop
- 3 LEDs for status indication
- Reset button on front
- Connection facility for external reset button
- Relay indicator output for operation
- Galvanic separation between control circuit and power circuit
- Width 22,5 mm

Approvals and Markings

Applications

- Motors with gear, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Woodworking machines, centrifuges
- Packaging machines, door drives
- Start current limiting on 3 phase motors

Circuit Diagram

Connection Terminals
Terminal designation Signal description A1 (+) Auxiliary voltage + DC 24 V A2 Auxiliary voltage 0 V X1+ Control input Start/Stopp X2 Earth connection control input MAN Input for remote reset RES Output for remote reset $11,12,14$ Indicator relay for operation L1 Phase voltage L1 L2 Phase voltage L2 L3 Phase voltage L3 T1 Motor connection T1 T2 Motor connection T2 T3 Motor connection T3

Function

Soft start

Two motor phases are impacted through thyristor phase-fired control to allow a steady increase of the currents. The motor torque behaves in the same manner when ramping up. This ensures that the drive can start without jerking and the drive elements are not damaged. Starting time and starting torque can be adjusted via rotary switch $t_{\text {on }}$ and $M_{\text {on }}$.

Softstop

The softstop function shall extend the natural running down time of the drive to also prevent jerky stopping.
The deceleration time is set with rotary switch $t_{\text {offf }}$, the running-down torque with rotary switch $\mathrm{M}_{\text {off }}$.

Phase failure

To make sure the motor is not loaded with asymmetric currents, a check takes place during motor start whether phases L1, L2 and L3 are present. If one or several phases are absent, the device switches to fault 4. The fault can be acknowledged via the reset button or reset input.

Control inputs

If a voltage of more than 10 V DC is connected to terminals $\mathrm{X} 1 / \mathrm{X} 2$, the device begins with softstart. If the voltage falls lower than DC 8 V the device will softstop.

Signalling output "Ready"

Contact $11 / 14$ is closed if no device fault is present.

$1^{*)}-7^{*)}=$ Number of flashing pulses in sequence

Reset Function

2 options are available to acknowledge the fault

Manual (reset button):

Acknowledgement is performed by operating the reset button at the front of the device. If the button is still actuated after 2 seconds, the device resumes the fault state.

Manual (remote acknowledgement):

Remote acknowledgement can be realised by connecting a button (N/O contact) between the terminals MAN and RES. Acknowledgement is triggered as soon as the contact of the button closes. If the button is still actuated after 2 seconds, the device resumes the fault state since a defect in the acknowledgement circuit cannot be ruled out.

Setting

Setting Facilities

Rotary switch $M_{o n}$:

- Starting torque at softstart 30 ... 80 \%
Rotary switch $\mathrm{M}_{\text {off }}$:
Rotary switch $\mathrm{t}_{\text {on }}$:
Rotary switch $\mathrm{t}_{\text {off }}$:
- Deceleration torque at softstop 80 ... 30 \%
- Start ramp 1 ... 10 s
- Deceleration ramp 1 ... 10 s

Set-up Procedure

1. Connect motor and device according to application example. A clockwise rotating field is assumed for operation. A anti-clockwise rotating field triggers a fault message
2. Turn rotary switch $t_{\text {on }} / t_{\text {off }}$ fully clockwise, $M_{\text {on }}$ e. g. $M_{\text {off }}$ fully anticlockwise and rotary switch $I_{\text {max }}$ e. g. I_{e} of the requrired current.
3. Connect voltage and starting via input R- or softstop L-.
4. The starting time is set by turning the rotary switch $t_{\text {on }}$ anti-clockwise and the starting torque is set by turning the rotary switch $\mathrm{M}_{\text {on }}$ clockwise to the desired value. If set correctly, the motor shall swiftly accelerate to the nominal speed.

Safety Notes

Attention !

- Never clear a fault when the device is switched on.
- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG)
- Adjustmentsmayonlybecarriedoutbyqualifiedspecialiststaffand the applicable safety rules must be observed.
- After a short circuit the softstart-softstop unit is defective and has to be replaced (Assignment type 1).
- Group supply:
- If several softstart-softstop units are protected together, the sum of the motor currents must not exceed 25 A.

Technical Data

Nominal voltage L1/L2/L3:
Nominal frequency:
Auxiliary voltage:
Motor power:
Min. motor power:
Operating mode:
6.9 A (3 kW / 400 V):

9 A (4 kW / 400 V):
Surge current:
Load limit integral:
Peak reverse voltage:
Overvoltage limiting:
Leakage current in off state:
Starting voltage:
Start / deceleration ramp:
Consumption:
Start up delay
for master tick:
Release delay
for master tick
Short circuit strength:
max. fuse rating:
Assignment type:
Electrcal life:
3 AC 200 ... $480 \mathrm{~V} \pm 10 \%$
$50 / 60 \mathrm{~Hz}$, automatic detection
DC $24 \mathrm{~V} \pm 10 \%$
max. 4 kW at AC 400 V
50 W

AC 53a: 3-5: 100-30 IEC/EN 60947-4-2
AC 53a: 6-2: 100-30 IEC/EN 60947-4-2
200 A (tp = 20 ms)
$200 \mathrm{~A}^{2} \mathrm{~s}(\mathrm{tp}=10 \mathrm{~ms})$
1500 V
AC 550 V
$<3 \times 0.5 \mathrm{~mA}$
30 ... 80 \%
1 ... 10 s
2 W
max. 100 ms
max. 50 ms

25 A gG / gL
1
$>10 \times 10^{6}$ switching cycles

Inputs

Control input X1+/X2:
Rated current:
Response value ON:
Response value OFF:
Connection:
Manuel:

DC 24V
4 mA
DC $10 \mathrm{~V} \ldots 30 \mathrm{~V}$
DC 0 V ... 8 V
polarity protected diode
DC 24 V
(connect button on terminals
"MAN" and "RES")
Indicator Outputs

RES:

Ready:
Contact:
Switching capacity
to AC 15
NO contact:
NC contact:
Thermal current $I_{\text {th }}$:
Electrical life
to AC 15 at 3 A, AC 230 V :
Mechanical life:
Permissible switching
frequency:
Test voltage
Coil - Contact:
Open Contact:
Short circuit strength
max. fuse rating:

DC 24 V , semiconductor, short circuit proof, rated continuous current 0.2 A
Changeover contact $250 \mathrm{~V} / 5 \mathrm{~A}$ 1 changeover contact

3 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
1 A / AC 230 V
5 A
2×10^{5} switch. cycles IEC/EN 60 947-5-1
30×10^{6} switching cycles

1800 switching cycles/h
4000 V AC
1000 V AC

4 A gG / gL
IEC/EN 60 947-5-1

Technical Data

General Data

Device type:
Operating mode:
Temperature range:
Operation:
Storage:
Relative air humidity:

Altitude:

Clearance and creepage distances
Rated insulation voltage:
overvoltage category /
contamination level
between control inputauxiliary voltage and
Motor voltage respectively indicator contact:
Overvoltage category:
EMC
Interference resistance
Electrostatic discharge (ESD)
HF-irradiation
80 MHz ... 1.0 GHz :
$1.0 \mathrm{GHz} \ldots 2.5 \mathrm{GHz}$:
2.5 GHz ... 2.7 GHz:

Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Voltage dips:
Interference emission
Wire guided:
Radio irradiation:
Degree of protection:

Housing:

Terminals:
Vibration resistance:
Climate resistance:
Wire connection:
Screw terminal
(fixed):
Control terminals
Cross section:

Power terminals
Cross section:

Insulation of wires or
sleeve length:
Fixing torque:
Wire fixing:

Hybrid Motor Controller H1B
Continuous operation
$0 \ldots+60^{\circ} \mathrm{C}$ (see derating curve)
$-25 \ldots+75^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 1.000 m

500 V
$4 \mathrm{kV} / 2$
IEC/EN 60 664-1
III

IEC/EN 61 000-4-2

IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
IEC/EN 61 000-4-11
Limit value class B IEC/EN 60 947-4-2
Limit value class B IEC/EN 60 947-4-2

IP 40	IEC/EN 60529
IP 20	IEC/EN 60529
Amplitude 0.35 mm	
frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60 068-2-6	
0 / 060 / 04	IEC/EN 60 068-1

$1 \times 0.14 \ldots 2.5 \mathrm{~mm}^{2}$ solid or stranded wire with sleeve
$1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}$ solid or
stranded wire with sleeve
8 mm
0.5 Nm
captive slotted screw

Mounting:
Weight:
DIN rail
IEC/EN 60715
220 g
Dimensions

UL-Data

Standards:

for all products:

- U.S. National Standard UL508, $17^{\text {th }}$ Edition
- Canadian National Standard - CAN/CSA-22.2 No. 14-13,12 ${ }^{\text {th }}$ Edition
with restrictions at motor switching power:
- ANSI/UL 60947-1, $3^{\text {rd }}$ Edition (Low-Voltage Switchgear and Controlgear Part1: General rules)
- ANSI/UL 60947-4-2, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear Part 4-2: Contactors and Motor-Starters - AC Semiconductor Motor Controllers and Starters)
- CAN/CSA-C22.2 No. 60947-1-07, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear - Part1: General rules)
- CSA-C22.2 No. 60947-4-2-14, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear - Part 4-2: Contactors and Motor-Starters - AC Semiconductor Motor Controllers and Starters

Motor data:

UL 508, CSA C22.2 No. 14-13
3 AC 200 ... 480 V,
3-phase, 50 / 60 Hz :
up to 7.6 FLA, 45.6 LRA at $40^{\circ} \mathrm{C}$ up to 4.8 FLA, 28.8 LRA at $50^{\circ} \mathrm{C}$ up to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$

UL 60947-4-2, CSA 60947-4-2
3 AC 200 ... 300 V,
3-phase, 50 / 60 Hz :

3 AC 301 ... 480 V,
3-phase, $50 / 60 \mathrm{~Hz}$:
Indicator output relay:
Wire connection:

Connections

A1+, A2, X1+, X2, MAN,
RES, NE, 11, 12, 14 :
AWG 22-14 Sol/Str Torque
3.46 Lb-in (0.39 Nm)

L1, L2, L3, T1, T2, T3:

Additional Notes:

- This device is intended for use on supply systems with a maximum voltage from phase to ground of 300 V (e.g. for a three phase-four wire system $277 / 480 \mathrm{~V}$ or on a three phase-three wire systems of 240V), rated impulse withstand voltage of max. 4 kV
- Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical Amperes, 480 Volts maximum when protected by class CC, J or RK5 fuse rated maximum 20 A
- For use in pollution degree 2 Environment or equivalent
- The control circuits of this device shall be supplied by an isolated 24 Vdc power supply which output is protected with a fuse rated max. 4 A dc
- For installations according to Canadian National Standard C22.2 No. 14-13 (cUL Mark only) and supply voltages above 400V:
- Transient surge suppression devices shall be installed on the line side of this equipment and shall be rated 240 V (phase to ground), 415 V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4 kV
- Transient surge suppression devices shall be installed on the line side of this equipment and shall be rated 277 V (phase to ground), 480 V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4 kV

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Characteristics

Derating curve:
Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Standard Type

UG 9019.11/110/61 3 AC $200 \ldots 480$ V 9,0 A $1 \ldots 10$ s
Article number: 0067032

- Nominal voltage: 3 AC 200 ... 480 V
- Nominal current: 9,0 A
- Ramp time: $1 \ldots 10 \mathrm{~s}$
- Width: 22.5 mm

Motor control with UG 9019 and PLC

MINISTART
Softstarter

- Increases life of 1-phase squirrel motors and mechanical drives
- Devices available in 2 enclosure version:

IL 9017: depth 61 mm with terminals at the bottom for installations systems and industrial distribution systems according to DIN 43880
SL 9017: depth 100 mm with terminals at the top for cabinets with mounting plate and cable duct

- For single phase motors up to 1.5 kW
- Adjustable ramp time and starting torque
- Semiconductors will be bridged after start up
- LED indication
- Width 35 mm

Approvals and Markings

C ϵ

Applications

- Drives with gears, belts or chains
- Conveyor belts, fans
- Pumps, compressors

Function

Softstarters are electronic devices designed to enable 1-phase induction motors to start smoothly IL 9017. Slowly ramps up the current, allowing the motor torque to build up slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material.
When the motor is up to full speed the semiconductors in IL 9017 are bridged to prevent internal power losses and heat build up.

Indication

LED green:
LED yellow:
supply connected on softstarter softstart is finished

Principle of Operation

Terminal L1 is connected to the mains contactor, terminal N to neutral, the motor is connected to terminals T1, T2. As soon as power is connected to terminal L1, the softstart will commence. Potentiometer " t_{an} " (1-10 sec.) adjusts the ramp time (time the motor takes to get to full speed) and potentiometer " $\mathrm{M}_{\text {an }}$ " adjusts the start voltage (20-70 \% $\mathrm{V}_{\text {nom }}$). When the softstart is complete the internal semiconductor is automatically bridged.

Notes

The motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart. It is recommended that the softstart is protected by superfast semicondutor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

Technical Data

Nominal voltage $\mathbf{U}_{\mathrm{N}}:$	AC $230 \mathrm{~V} \quad-20 \% \quad+10 \%$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Nominal motor power $\mathbf{P}_{\mathrm{N}}:$	1.5 kW
Min. motor power:	approx. 10% of rated motor power
Nominal current:	10 A
External fuse (optional)	
superfast: Starting voltage:	20 A
Acceleration time	$20 \ldots 70 \%$
at starting voltage $20 \%:$	$0.1 \ldots 10 \mathrm{~s}$
Recovery time:	200 ms
Switching frequency:	$10 / \mathrm{h} \mathrm{at} 3 \mathrm{x} \mathrm{I}_{\mathrm{r}} / \mathrm{t}_{\mathrm{an}}=10 \mathrm{~s}, \vartheta_{\mathrm{U}}=20^{\circ} \mathrm{C}$
Power consumption:	1.4 VA

General Data

Operating mode:
Temperature range:
Storage temperature:
Clearance and creepage

distances

rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Weight
IL 9017: $\quad 135 \mathrm{~g}$
SL 9017:
164 g

Dimensions

Width x height x depth

IL 9017:

$35 \times 90 \times 61 \mathrm{~mm}$
SL 9017:
$35 \times 90 \times 100 \mathrm{~mm}$

Installation

These units must be mounted on a vertical mounting area with the connections in a vertical plane, i.e. top to bottom. Ensure that no external heat source is placed below the unit and a 40 mm air gap is maintained above and below. Other devices may be directly mounted either side of the unit.

Set-up Procedure

1. Set potentiometer " M_{an} " to minimum (fully anti-clockwise)

Set potentiometer " t_{an} "n to maximum (fully clockwise)
2. Start the motor and turn potentiometer " M_{an} " up until the motor starts to turn without excessive humming. Stop the motor and restart.
3. Adjust potentiometer " t_{an} " to give the desired ramp time.

Stop and restart the motor, readjusting the potentiometers until the desired starting characteristics are achieved.

Attention: If the ramp-up time is adjusted to short, the internal bridging contact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Safety Notes

- Never clear a fault when the device is switched on
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Application Example

Standard Type

IL 9017 AC 230 V 1.5 kW Article number:
SL 9017 AC 230 V 1.5 kW
Article number:

- Nominal voltage U_{N} :
- For motors up to 1.5 kW
- Width:

0049323

0050603
AC 230 V
35 mm

Function Diagram

- Increases life of 1-phase squirrel motors and mechanical drives
- For single phase motors up to 1.5 kW
- Adjustable ramp time/deceleration time and starting torque/ deceleration torque
- Semiconductors will be bridged after start up
- LED indication
- Width 35 mm

Approvals and Markings

C ϵ

Applications

- Drives with gears, belts or chains
- Conveyor belts, fans
- Pumps, compressors

Function

These softstart units are electronic devices designed to enable 1-phase induction motors to start and stop smoothly. By phase control the current is slowly ramped up and down allowing the motor torque to build up and decrease slowly. It provides shock free start and stop of the motor. Sudden changes of the torque as on direct start and stop do not appear any more. This feature allows an economic construction of the mechanical connected elements and prevents demage to conveyed material on conveyor systems.

When the motor is up to full speed the semiconductors in IL 9017 are bridged to prevent internal power losses and heat build up.

Indication

LED green:
LED yellow:
softstart active
softstart is finished,
short flashing when mains frequency is outside limits

Block Diagram

Notes

The motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart. It is recommended that the softstart is protected by superfast semicondutor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

Technical Data

Nominal voltage $\mathrm{U}_{\mathrm{N}}:$	$\mathrm{AC} 230 \mathrm{~V} \quad-15 \% \quad+10 \%$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Nominal motor power $\mathrm{P}_{\mathrm{N}}:$	1.5 kW
Min. motor power:	approx. 10% of rated motor power Nominal current: External fuse (optional) superfast:
Starting torque/ deceleration torque: ramp-up time/	20 A
deceleration time:	

General Data

Operating mode:	continuous operation	
Temperature range:	$0 \ldots+55^{\circ} \mathrm{C}$	
Storage temperature:	$-25 \ldots+75{ }^{\circ} \mathrm{C}$	
Clearance and creepage distances		
rated impulse voltage /	$4 \mathrm{kV} / 2$	IEC 60 664-1
pollution degree:		
EMC		
Electrostatic discharge:	8 kV (air)	IEC/EN 61 000-4-2
HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	2 kV	IEC/EN 61 000-4-4
Surge voltages between		
wires for power supply:	1 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
HF wire guided:	10 V	IEC/EN 61 000-4-6
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing:	IP 40	IEC/EN 60529
Terminals:	IP 20	IEC/EN 60529
Housing:	Thermoplastic with V0 behaviour according to UL subject 94	
Vibration resistance:	Amplitude 0.35 mm , IEC/EN 60 068-2-6 frequency 10 ... 55 Hz	
Climate resistance:	0 / 055 / 04	IEC/EN 60 068-1
Terminal designation:	EN 50005	
Wire connection:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or	
	$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled	
Wire fixing:	Flat terminals with self-lifting	
	clamping piece	IEC/EN 60 999-1
Mounting:	DIN rail	IEC/EN 60715
Weight:	135 g	
Dimensions		

Width x height x depth:

$$
35 \times 90 \times 61 \mathrm{~mm}
$$

Standard Type

IL 9017/300 AC 230 V 1.5 kW

Article number:

0058831

- Nominal voltage U_{N} :
- For motors up to 1.5 kW
- Width: AC 230 V 35 mm

Adjustment Facilities

Ramp up/deceleration time: With potentiometer $t_{\text {on,off }}$ the ramp up and decelertion time can be adjusted within the range 0.1 to 10 s .
Starting and deceleration torque: With potentiometer $\mathrm{M}_{\text {on,off }}$ the starting torque and the deceleration torque can be adjusted in the range of 20 to 70% of the max. value.

Set-up Procedure

1. Set potentiometer " $M_{\text {on, off }}$ fully anti-clockwise Set potentiometer " $\mathrm{t}_{\text {on, off }}$ " fully clockwise
2. Start motor by closing contact input Q1-Q2. If the motor does not start, interrupt the process and adjust " $\mathrm{M}_{\text {on, off }}$ " to a higher value. New start.
3. Adjust potentiometer " $\mathrm{t}_{\text {on, off }}$ " to give the desired ramp time.

Stop and restart the motor, readjusting the potentiometers until the desired starting characteristics are achieved.

Attention:

If the ramp-up time is adjusted to short, the internal bridging contact closes before the motor is on full speed. This may damage the bridging relay.
Changes on potentiometer settings are only accepted in the waiting for start status.

Safety instruction

- Never clear a fault when the device is switched on
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Block Diagram

- Increases the life of squirrel cage motors and mechanical drives
- Easily fitted to existing installations
- 1 phase control
- For motors up to $5,5 \mathrm{~kW}$ (BA 9010) and to 11 kW (BN 9011)
- Semiconductors bridged after softstart
- Adjustable ramp time and starting torque
- LED indication
- DIN-rail mounting
- BA 9010: width 45 mm BN 9011: width 100 mm

Approvals and Markings

C

Applications

- Motor with gears, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Door drives, packaging machines
- Start current limiting on single phase motors

Function

Softstarters are electronic devices designed to enable 1-phase or 3-phase induction motors to start smoothly. BA 9010 / BN 9011 slowly ramps up the current on one phase, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material.
When the motor is up to full speed the semiconductors in BA 9010 / BN 9011 are bridged to prevent internal power losses an heat build up.

Principle of Operation

For direct on line or star delta applications at 400 V , terminals L1, L2, L3 are connected to the mains contactor, terminals X3, X4 should be bridged and the motor connected to terminals T1, T2, T3. As soon as power is connected to terminals L1, L2, L3 the softstart will commence. Potentiometer " $\mathrm{t}_{\text {an }}$ ($0,5-5 \mathrm{sec}$.) adjusts the ramp time (time the motor takes to get fo full speed) and potentiometer " $\mathrm{M}_{\mathrm{an}}{ }^{\text {" }}$ adjusts the start voltage ($0-70 \%$ nomV). When the softstart is complete the internal semiconductor is automatically bridged.

Notes

When using BA 9010 / BN 9011 on 230 V 3-phase motors the power rating of the unit must be reduced, i.e. BA 90103 kW at 400 V would be rated $1,5 \mathrm{~kW}$ at 230 V . To allow softstarting the motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart.
It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperture monitoring is recommended.

Technical Data			
Model:	BA 9010	\| BN 9011	
Nominal voltage:	3 AC $230 / 400 \mathrm{~V}$		
Voltage range:	$160 \ldots 240 \mathrm{~V} \pm 10 \%$$380 . .480 \mathrm{~V} \pm 10 \%$		
Nominal frequency:	$50 / 60 \mathrm{~Hz}$		
Nominal motor power P_{N} at			
400 V :	3 kW 5,5 kW	\|7,5 kW	11 kW
230 V :	1,5 kW 3 kW	4 kW	5,5 kW
Min. motor power:	approx. 10% of rated motor power		
Start torque:	0 ... 70 \%		
Ramp time:	0,5 ... 5 s		
Recovery time:	200 ms		
Switching frequency:	100/h 80/h	50/h	30/h
Power consumption:	1,5 VA 3,5 VA	3,5 VA	3,5 VA
Operating temperature:	$0 \ldots+45^{\circ} \mathrm{C}$		
Storing temperature:	$-25 \ldots+75^{\circ} \mathrm{C}$		
Protection class:	IP 30 IEC/EN 60529		
Wire connection:	up to $2,5 \mathrm{~mm}^{2}$ stranded ferruled		
Mounting:			
Weigth:	$300 \mathrm{~g} \quad 300 \mathrm{~g}$	\| 500 g	500 g
Dimensions			
Width x height x depth:			
BA 9010:	$45 \times 74 \times 121 \mathrm{~mm}$		
BN 9011:	$100 \times 74 \times 121 \mathrm{~mm}$		
Standard Type			
BA 9010 3 AC $230 \mathrm{~V} / 400 \mathrm{~V}$	$50 / 60 \mathrm{~Hz} \quad 1,5 \mathrm{~kW} / 3 \mathrm{~kW}$		
Article number:	0045241 $30 \mathrm{~V} / 400 \mathrm{~V}$ stock item		
- Nominal voltage: 3 AC 230			
- Nominal motor power:	$1,5 \mathrm{~kW} / 3 \mathrm{~kW}$		
- Width:	45 mm		

Ordering Example			
BN 9011	AC 230 / 400 V	$\underline{50 / 60 ~ H z}$	$3 / 5.5 \mathrm{~kW}$
			Nominal motor power Nominal frequency Nominal voltage Type

Installation

These units must be mounted on a vertical mounting area with the connections in a vertical plane, i.e. top to bottom. Ensure that no external heat source is placed below the unit and a 40 mm air gap is maintained above and below. Other devices may be directly mounted either side of the unit.

Control Input

To operate the device at AC 230 V it's necessary to bridge the terminals X1, X2. For change pole motor applications the terminals X3, X4 have to be connected via a contact. Otherwise they have to be bridged.

Set-up Procedure

1. Set potentiometer " M_{an} " to minimum (fully anti-clockwise)

Set potentiometer " $\mathrm{t}_{\mathrm{an}}{ }^{\text {an }}$ " to maximum (fully clockwise)
2. Start the motor and turn potentiometer " M_{an} " up until the motor starts to turn without excessive humming. Stop the motor and restart.
3. Adjust potentiometer " $\mathrm{tan}_{\mathrm{a}}$ " to give the desired ramp time.

Stop and restart the motor, readjusting the potentiometers until the desired starting characteristics are achieved.

- Attention: If the ramp-up time is adjusted to short, the internal bridging

\trianglecontact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Safety Notes

- Never clear a fault when the device is switched on
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Application Examples

BA 9010 connected to a 3 phase induction motor with reversing

Softstart of a single phase motor on 230 V AC supply

Application Example

BN 9011 connected to a 3 phase multi-pole (Dahlander) motor with reversing

Function Diagram

- According to IEC/EN 60 947-4-2
- Softstart and softstop function
- 2-phase motor control
- For motors up to 5.5 kW
- Adjustable ramp time, starting torque and deceleration time
- Wide motor voltage range
- Galvanic separation of control input
- Galvanic separation of auxiliary power supply
- Integrated overtemperature monitoring
- Width: 45 mm

Approvals and Markings

* see variant

Applications

- Motors with gear, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Woodworking machines, centrifuges
- Packaging machines, door drives
- Start current limiting on 3 phase motors

Function

Softstarters are electronic devices designed to enable 3-phase induction motors to start smoothly. The BA 9019 slowly ramps up the current on two phases, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material.
When the motor is up to full speed the semiconcutors in BA 9019 are bridged to prevent internal power losses and heat build up. In addition BA 9019 allows a softstop function prolonging the stop time of the motor, preventing high counter torques from abruptly stopping the motor.

Indication

LED green:
 LED yellow:
 LED red:

BA 9019/100
LED green:
LED yellow:
on, when power connected
on, when power semiconductors bridged
on, when temperature monitoring active
on, when auxiliary supply connected
flashing, during ramp up or down
continuously on, when power semiconductors bridged

Notes

Motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart.
It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

Technical Data

Nominal voltage L1/L2/L3:
Nominal frequency:
Nominal motor power P_{N} at 400 V:
200 V:
Rated current:
Switching frequency
up $3 \times \mathrm{I}_{\mathrm{N}}, 5 \mathrm{~s}, \vartheta_{\mathrm{u}}=20^{\circ} \mathrm{C}$:
Min. motor power:
Start torque:
Ramp time:
Deceleration torque:
Deceleration time:
Recovery time:
Auxiliary voltage A1 + / A2:
Power consumption:
Residual ripple:
Control Input
Voltage range X1/X2:

Softstart:

Softstop:
General Data
Operating mode:
Temperature range:
Operation
Storage:
Relative air humidity:
Altitude:
Clearance and creepage
distance
Rated insulation voltage:
Overvoltage category:
Rated impuls voltage /
pollution degree
between
auxiliary voltage/control circuit
nominal voltage:
EMC
Interference resistance
Electrostatic discharge (ESD): 8 kV (air)
HF-irradiation
80 Mhz ... 1.0 Ghz:
1.0 GHz ... 2.5 GHz
2.5 GHz ... 2.7 GHz:

Fast transients:
Surge voltage
between
$\begin{array}{ll}\text { wires for power supply: } & 1 \mathrm{kV} \\ \text { between wire and ground: } & 2 \mathrm{kV}\end{array}$
HF-wire guided: 10 V
Interference emission
Wire guided:

Radio irradiation:
Degree of protection:
Housing:
Terminals:
Vibration resistance:
Climate resistance:
Wire connection:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
Dimensions
Width \mathbf{x} height x depth:
$10 \mathrm{~V} / \mathrm{m}$
$3 \mathrm{~V} / \mathrm{m}$
$1 \mathrm{~V} / \mathrm{m}$
2 kV
3 AC 200 V -10\% ... 460 V +10\%
$50 / 60 \mathrm{~Hz}$

3 kW	5.5 kW
1.5 kW	2.2 kW
8 A	12 A

|20/h $10 / \mathrm{h}$
approx. 10% of rated motor power
50 ... 80 \%
$0.5 \ldots 5 \mathrm{~s}$
30 ... 80 \%
$0.5 \ldots 5 \mathrm{~s}$
200 ms
DC $24 \mathrm{~V} \quad \pm 20 \%$
3 W
5 \%

DC: 0 ... 28.8 V
$>13 \mathrm{~V}$
< 5 V

Continuous operation
$0 \ldots+55^{\circ} \mathrm{C}$
$-25 \ldots+75^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 1,000 m

AC 500 V
III
.

4 kV / 2
IEC/EN 60 664-1
IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN $61000-4-3$
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
IEC/EN 61 000-4-11
Limit value class A*) IEC/EN 60 947-4-2 ${ }^{*}$) The device is designed for the usage under industrial conditions (Class A, EN 55011). When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated.
To avoid this, appropriate measures have to be taken.
Limit value class B IEC/EN 60 947-4-2

IP 40

IEC/EN 60529
IP 20
IEC/EN 60529
Amplitude 0.35 mm
frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN $60068-1$ 0 / 055 / 04

IEC/EN 60 068-1
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
10 mm
0.8 Nm

Flat terminals with self-lifting
clamping piece
IEC/EN 60 999-1
DIN rail
300 g

Standard Type

BA 90193 AC 200 ... 460 V 50/60 Hz 3 kW
Article number: 0051284

- Nominal voltage: 3 AC 200 ... 460 V
- Nominal motor power: 3 kW
- Width: 45 mm

Variant

BA 9019/60: with CSA-approval fo
3 AC 200 V - 10 \% ... 400 V + 10 \%
10 A nominal current
eceleration time from $0 \ldots 5$ s adjustable
BA 9019/100:

Ordering example for variant

Installation

This units must be mounted on a vertical mounting area with the connections in a vertical plane, i.e. top to bottom.
Ensure that no external heat source is placed below the unit and a 40 mm air gap is maintained above and below. Other devices may be directly mounted either side of the unit.

Control Input

If a voltage of more than $13 \vee D C$ is connected to terminals $X 1 / X 2$, the device begins with softstart. If the voltage falls lower than DC 5 V the device will softstop.

Adjustment Facilities		
Potentiometer	Description	Initial setting
$\mathrm{M}_{\text {on }}$	Starting voltage	fully anti-clockwise
$\mathrm{t}_{\text {on }}$	Ramp-up time	fully clockwise
$\mathrm{M}_{\text {off }}$	Deceleration voltage	fully clockwise
$\mathrm{t}_{\text {off }}$	Deceleration time	fully clockwise

Set-up Procedure

Set potentiometer " $\mathrm{M}_{\text {an }}$ " to minimum (fully anti-clockwise).
Set potentiometer " $\mathrm{M}_{\mathrm{ab}}{ }^{\text {an }}$ " to maximum (fully clockwise).
Set potentiometer " $\mathrm{tan}^{\mathrm{ab}}$ to maximum (fully clockwise).
Set potentiometer " $\mathrm{t}_{\mathrm{ab}}^{\mathrm{an}}$ " to maximum (fully clockwise).
Start the motor and turn potentiometer " M_{an} " up until the motor starts to turn without excessive humming
Stop the motor and restart.
Adjust potentiometer " t " to give the desired ramp time.
Stop and restart the motor.
Adjust potentiometer " M_{ab} " until the motor starts to visibly slow down at the initation of the softstop cycle
Stop and restart the motor.
Adjust potentiometer " t_{a} " to give the desired deceleration time.
Stop and restart the motor, readjusting the potentiometers until the desired starting/stopping characteristics are achieved.

- Attention: If the ramp-up time is adjusted to short, the internal
bridging contact closes before the motor is on full speed.
This may damage the bridging contactor or bridging relay.

Temperature Monitoring

BA 9019 features overtemperature monitoring of its internal power semiconductors. When the safe running temperature is exceeded the power semiconductors will turn off and a red LED on the front of the unit will illuminate. BA 9019 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage.

Safety Notes

- Never clear a fault when the device is switched on
- Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Application Example

Softstart and softstop

Function Diagram

- According to IEC/EN 60 947-4-2
- Softstart and softstop function
- 3-phase motor control
- For motors up to 5.5 kW
- Adjustable ramp time, starting torque and deceleration time
- Wide motor voltage range
- Galvanic separation of control input
- Galvanic separation of auxiliary power supply
- Integrated overtemperature monitoring
- 45 mm Baubreite

Approvals and Markings

C

Applications

- Motor with gear, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Packaging machines, door-drives
- Start current limiting on 3-phase motors
- Reduces on off current on transformers and P.S.U's

Function

Softstarts are electronic devices designed to enable 1-phase or 3-phase induction motors to start smoothly. The BA 9026 slowly ramps up the current on three phases, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress or the machine and prevents damage to conveyed material.
When the motor is up to full speed the semiconductors in BA 9026 are bridged to prevent internal power losses and heat build up to addition BA 9026 allows a softstop function prolonging the stop time of the motor preventing high counter torques from abruptly stopping the motor.

Indication		
LED green	ON	$=$ power connected
LED yellow	ON	$=$ power semiconductors bridged
LED red	ON	$=$ overtemperature

Principle of Operation

For direct on line or star delta applications, terminals L1, L2, L3 are connected to the mains contactor, with the motor connected to terminals T1, T2, T3. A 24V DC auxiliary supply is connected to terminals A1, A2 and a 24 V DC control signal connected to terminals $\mathrm{X} 1-\mathrm{X} 2$.
When power is connected to terminals L1, L2, L3 and 24 V DC is presentat terminals X1-X2, the softstart will commence. Potentiometer" $\mathrm{t}_{\text {an }}$ " ($0.5-5 \mathrm{~s}$) adjusts the ramp time (time motor takes to get to full speed) and potentiometer " M_{an} " adjusts the start voltage
($50-80 \%$ nomV).
When the softstart is complete the internal semiconductors are auto-matically bridged. When 24 V DC is removed from terminals $\mathrm{X} 1-\mathrm{X} 2$, the softstop function willcommence for the deceleration time period set on potentiometer" t_{ab} " ($0.5-5 \mathrm{~s}$) and deceleration voltage level set on potentiometer" $\mathrm{M}_{\mathrm{ab}}{ }^{\text {ab }}$ (30-80\% nomV).

Notes

Motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart.
It is recomended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart of motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

Technical Data				
Nominal voltage:	AC 200 ... 460 V			
Nominal frequency:	$50 / 60 \mathrm{~Hz}$			
Nominal motor power P_{N} at				
400 V :	3 kW 5.5 kW			
200 V :	1.5 kW	2.2 kW		
Rated current:	8 A	12 A		
Switching frequency:				
$3 \times I_{r}, t_{\text {acc }}=5 \mathrm{~s}, \mathrm{~J}_{\mathrm{v}}=20^{\circ}$	$\begin{array}{l\|l} \text { 20/h } & \text { 10/h } \\ \text { approx. } 10 \% \text { of rated motor power } \end{array}$			
Min. motor power:				
Start torque:				
Ramp time:				
Deceleration time:				
Recovery time:	200 ms			
Auxiliary voltage A1/A2:	DC $24 \mathrm{~V} \pm 20$ \%			
Power consumption:	3 W			
Residual ripple:	5%			
Control Input				
Voltage range $\mathrm{X} 1+/ \mathrm{X} 2$:	DC: 0 ... 28.8 V			
Softstart:	$>13 \mathrm{~V}$			
Softstop:	$<5 \mathrm{~V}$			
General Data				
Operating mode:	Continuous operation			
Temperature range:				
Operation:	$0 \ldots+55^{\circ} \mathrm{C}$			
Storage:	$-25 \ldots+75{ }^{\circ} \mathrm{C}$			
Relative air humidity:	93\% at			
Altitude:	< 1,000 m			
Clearance and creepage distance				
Rated insulation voltage:	AC 500V			
Overvoltage category:	III			
Rated impuls voltage / pollution degree				
between				
nominal voltage:			IEC/EN 60 664-1	
EMC				
Interference resistance				
Electrostatic discharge (ESD): HF-irradiation	8 kV (air)		IEC/EN 61 000-4-2	
80 Mhz ... 1.0 Ghz:	$10 \mathrm{~V} / \mathrm{m}$		IEC/EN 61 000-4-3	
1.0 GHz ... 2.5 GHz	$3 \mathrm{~V} / \mathrm{m}$		IEC/EN 61 000-4-3	
2.5 GHz ... 2.7 GHz	$1 \mathrm{~V} / \mathrm{m}$		IEC/EN 61 000-4-3	
Fast transients:	2 kV		IEC/EN 61 000-4-4	
Surge voltage				
between				
wires for power supply:	1 kV		IEC/EN 61 000-4-5	
between wire and ground:	2 kV10 V		IEC/EN 61 000-4-5	
HF-wire guided:			IEC/EN 61 000-4-6	
Voltage dips			IEC/EN 61 000-4-11	
Interference emission				
Wire guided:	Limit value class B		IEC/EN 60 947-4-2	
Radio irradiation:Degree of protection:	Limit value class B IEC/EN 60 947-4-2			
Housing:	IP 40		IEC/EN 60529	
Terminals:	IP 20 IEC/EN 60529			
Vibration resistance:	Amplitude 0.35 mm frequency 10 ... 55 Hz , IEC/EN $60068-1$			
Climate resistance: Wire connection:	0/055/04 IEC/EN 60 068-1			
	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or			
	$1 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228-1/-2/-3/-4			
Stripping length:	10 mm			
Fixing torque:	0.8 Nm			
Wire fixing:	Flat terminals with self-lifting			
Mounting::	DIN rail			
Weight:	300 g			
Dimensions				
Width x height x depth:	$45 \times 74 \times$	21 mm		

Standard Type	
BA 90263 AC 200 ... 460 V Article number: - Nominal voltage: - Nominal motor power: - Width:	$\begin{aligned} & 50 / 60 \mathrm{~Hz} 3 \mathrm{~kW} \\ & 0046450 \\ & 3 \mathrm{AC} 200 \mathrm{~V} \\ & 3 \mathrm{~kW} \\ & 45 \mathrm{~mm} \end{aligned}$
Variant	
Ordering example for variant	
Installation	
This units must be mounted on a vertical mounting are a with the connections in a vertical plane, i.e. top to bottom. Ensure that no external heat source is placed below the unit and a 40 mm air gap is maintained above and below. Other devices may be directly mounted either side of the unit.	

Control Input

If a voltage of more than $13 \mathrm{~V} D$ is connected to terminals $\mathrm{X} 1 / \mathrm{X} 2$, the device begins with softstart. If the voltage falls lower than DC 5 V the device will softstop.

Set-up Procedure

Set potentiometer „ M_{an} " to minimum (fully anti-clockwise).
Set potentiometer ", M_{ab} " to maximum (fully clockwise).
Set potentiometer ,t ${ }_{\text {an }}{ }^{\text {a" }}$ " to maximum (fully clockwise).
Set potentiometer „t ${ }_{\text {ab }}$ " to maximum (fully clockwise).
Start the motor and turn potentiometer „ M_{an} " up until the motor starts toturn without excessive humming.
Stop the motor and restart.
Adjust potentiometer „t ${ }^{\text {an }}$ " to give the desired ramp time.
Stop and restart the motor.
Adjust potentiometer „, M_{ab} " until the motor starts to visibly slow down atthe initiation of the softstop cycle.
Stop and restart the motor.
Adjust potentiometer „ t_{ab} " to give the desired deceleration time.
Stop and restart the motor, readjusting the potentiometers until the desired starting/stopping characteristics are achieved.

- Attention: If the ramp-up time is adjusted to short, the internal
 bridging contact closes before the motor is on full speed.
This may damage the bridging contactor or bridging relay.

Temperature Monitoring

BA 9026 features overtemperature monitoring of its internal power semiconductors. When the safe running temperature is exceeded the power semiconductors will turn off and a red LED on the front of the unit will illuminate. BA 9026 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage.

Safety Notes

- Never clear a fault when the device is switched on
- Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.
- The user must ensure that the device and the necessary componentsare mounted and connected according to the locally applicableregulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Connection Example

Softstart and softstop

Function Diagram

- For soft and shockfree start of your asynchronous motors
- Less wearing and longer life for your motors and components
- Space saving and easy fitting
- Reduce load from supply mains by reducing of starting current
- According to IEC/EN 60 947-4-2
- Softstart with softstop
- For motors up to 37 kW
- 2-phase control
- Adjustable start up and deceleration time als well as starting voltage, optionally with kickstart
- Without auxiliary voltage
- W3 connection is possible
- As option current control on softstart
- Up to 15 kW : width 45 mm

Up to 22 kW : width 52.5 mm

Approvals and Markings

C

Applications

- Motors with gear, belt or chain drive
- Fans, pumps, conveyor systems, compresseors
- Packaging machines, door drives
- Start current limiting on 3 phase motors

Function

Softstarters are electronic devices designed to enable 1-phase or 3 -phase induction motors to start smoothly. The GF 9016 slowly ramps up the current on two phases, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material.
When the motor is up to full speed the power semiconductors in GF 9016 are bridged to prevent internal power losses and heat build up. In addition GF 9016 allows a softstop function prolonging the stop time of the motor, preventing high counter torques from abruptly stopping the motor.

Block Diagram

25 to 37 kW

LED red: On, when failure detected (only on devices $\geq 25 \mathrm{~kW}$
Failure codes up to 22 kW -devices

Fault	LED yellow	Operating state
1	yellow LED flashes $2 \times$ times with short space	device overloaded / heat sink temperature to high
2	yellow LED flashes 3 x times with short space	failure in electronics
3	yellow LED flashes $4 \times$ times with short space	firing error in phase 1
4	yellow LED flashes $5 \times$ times with short space	firing error in phase 3
5	yellow LED flashes $6 \times$ times with short space	error in motor phase/ power semicond. defective in phase 1
6	yellow LED flashes $7 \times$ times with short space	error in motor phase/ power semicond. defective in phase 3
7	yellow LED flashes $8 \times$ times with short space	general synchronising error

Failure codes from 25 kW-devices

Fault	LED yellow	Operating state
0	yellow LED flashes $1 \times$ times with short space	low supply voltage
1	yellow LED flashes $2 \times$ times with short space	device overloaded / heat sink temp. to high; motor overtemperat.
2	yellow LED flashes $3 \times$ times with short space	current control time out
3	yellow LED flashes $4 \times$ times with short space	phase failure 1
4	yellow LED flashes $5 \times$ times with short space	phase failure 2
5	yellow LED flashes $6 \times$ times with short space	phase failure 3
6	yellow LED flashes $7 \times$ times with short space	frequency failure
7	yellow LED flashes $8 \times$ times with short space	firing error in phase 1
8	yellow LED flashes $10 \times$ times with short space	firing error in phase 3
9	yellow LED flashes $11 \times$ times with short space	mains failure

Motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart. It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

Technical Data

Nominal voltage:

Nominal frequency:
Rated current:
Nominal motor power at P_{N} at 400 V :

Min. motor power:
Start torque:
Ramp time:
Deceleration time:
Staring current:
Recovery time:
Switching frequency:
l²t-Power semiconductor fuse

General Data
Temperature range:
Storage temperature:
Overvoltage caregory /
polluiton degree:
Insulation class:
Peak voltage resistance:
Degree of protection:
4 kV
IP 20
EC/EN 60529
Wire connection
Load terminals up to 22 kW :
Stranded wire:
Control terminals:
up to 22 kW
to 25 kW :
Mounting:
Weight:
$0 \ldots+45^{\circ} \mathrm{C}$
$-25 \ldots+70^{\circ} \mathrm{C}$
III / 2

3
plug in screw terminal

6		6	16	16	25	25	$25 \mathrm{~mm}^{2}$

$1.5 \mathrm{~mm}^{2}$ cage clamp terminals
$2.5 \mathrm{~mm}^{2}$ screw terminal
DIN-rail mounting IEC/EN 60715
$1.0|1.0| 1.0|1.0| 1.5|1.5| 2.2 \mathrm{~kg}$
Dimensions

Width x height x depth (incl. terminals)

$7,5 / 11 / 15 \mathrm{~kW}:$	$45 \times 173 \times 158 \mathrm{~mm}$
$22 \mathrm{~kW}:$	$52.5 \times 178 \times 158 \mathrm{~mm}$
$25 / 30 \mathrm{~kW}:$	$103 \times 230 \times 125 \mathrm{~mm}$
$37 \mathrm{~kW}:$	$103 \times 230 \times 140 \mathrm{~mm}$

Standard Type

GF 90163 AC $400 \mathrm{~V} 50 / 60 \mathrm{~Hz} 7.5 \mathrm{~kW}$

- Nominal voltage: 3 AC 400 V
- Nominal motor power: $\quad 7.5 \mathrm{~kW}$
- Width: 45 mm

Ordering Example

Accessories

A current transformer for current control on softstart is included in delivery.

Control Input

Up to 22 kW

Connect conact to X1, X2 and select softstart (close contact) or softstop (open contact). As option the unit can also be started by an external control voltage of DC 10-24 V. This has to be connected to terminals X2, X3, X4 connecting means starting up,disconnection stopping. On terminal X3 a kickstart function can be activated. This is useful on motors that have a high starting load as e.g. mills, breakers, conveyors. Kickstart takes 0.5 sec at fully switched thyristors.

From 25 kW

X5, X6: Connection for notor thermistor, must be linked, when not used
X7, X8: Connection for current transformerm with current control Input is only active, if a current transformer is connected

Indicator Outputs

Up to 22kW

X5, X6: error at phase failure, frequency variation, thyristor failure, overtemperature of the unit, disconnected motor. Reset by switching the unit off and on.
X7, X8: softstart finished, semiconductors bridged.
$\geq 25 \mathrm{~kW}$
X9, X10: motor runs, device on operation
$\mathrm{X} 11, \mathrm{X} 12$: end of softstart, semiconductor bridged
X13, X14: interference (common alarm)

Adjustment Facilities

Potentiometer	Description	Initial setting
$\mathrm{U}_{\text {start }}$	Starting voltage	fully anti-clockwise
$\mathrm{t}\lrcorner$	Ramp-up time	fully clockwise
t_{\imath}	Deceleration time	fully clockwise
I (only for 25 kW)	current controlled start	fully anti-clockwise

Set-up Procedure

Set potentiometer " $\mathrm{U}_{\text {start }}$ " to minimum (fully anti-clockwise).
Set potentiometer "t ς " to maximum (fully clockwise).
Set potentiometer "t 乙" to mid position.
Start the motor and turn potentiometer " $\mathrm{U}_{\text {start }}$ " up until the motor starts to turn without excessive humming.
Stop the motor and restart.
Adjust potentiometer "t ς " to give the desired ramp time.
Stop and restart the motor.
Adjust potentiometer " $\mathrm{t} \mathrm{\imath}$ " to give the desired deceleration time.
Stop and restart the motor, readjusting the potentiometers until the desired starting/stopping characteristics are achieved.

- Attention: If the ramp-up time is adjusted to short, the internal bridging contact closes before the motor is on full speed.
This may damage the bridging contactor or bridging relay.

Safety Notes

- Never clear a fault when the device is switched on

Attention: This device can be started by potential-free contact, while
 connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Application Examples

Softstart with softstop

Softstart in a $\sqrt{3}$-circuit up to 22 kW
Start only by connecting the mains voltage, terminals $\mathrm{X} 1-\mathrm{X} 2$ bridget

Application Example

Softstart and softstop function from 25 kW withcontrolled current on start up.

Product Description

The softstarter UH 9018 is an electronic device designed to enable 1-phase or 3-phase induction motors to start smoothly. The devices slowly ramps up the current on two phases, therefore allowing the motor torque to build up slowly.This reduces the mechanical stress on the machine and prevents damage to conveyed material. These features allow cost saving constructions of mechanical gear.
When the motor is up to full speed the power semiconductors in UH 9018 are bridged to prevent internal power losses and heat build up. In addition UH 9018 allows a softstop function prolonging the stop time of the motor, preventing high counter torques from abruptly stopping the motor.

Function Diagram

: start
$t_{0}-t_{1}$: ramp time
$\mathrm{t}_{2}-\mathrm{t}_{3}$: stop time

Your Advantages

- Protection of the drive unit
- Integrated bridging contactor (Bypass)
- Easy operation
- Comprehensive diagnostic via LED-flashing codes possible

Features

- Softstart with softstop
- For motors from 1.5 kW to 7.5 kW
- 2-phase control
- Adjustable ramp time, starting torque and starting voltage
- Kickstart-(Boost-)function
- DIN-rail mounting
- Width: 45 mm

Approvals and Markings

Applications

- Motors with gear, belt or chain drive
- Fans, pumps, conveyor systems, compresseors
- Woodworking machines, centrifuges
- Packaging machines, door drives
- Start current limiting on 3 phase motors

Indication	
green LED:	power connected
yellow LED: top	flashes with rising or falling speed at softstart-softs-
	flashes with same frequency at error

Notes

The motor load must always be connected as continuous operation of the softstart with no load may cause overheating of the motor and softstart. It is recommended that the softstart is protected by superfast semicondutor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.

Circuit Diagram

Connection Terminals

UH9018/ 0 :

Terminal designation	Signal description
L1, L2, L3	Connection nominal voltage (L1, L2, L3)
T1, T2, T3	Connection Motor (U, V, W)
X1, X2	Control input (Start/Stop)
X1, X3	Control input (Kickstart (Boost))
X4	Earth connection
11,14	Indicator relay K1, NO contact (error)
21,24	Indicator relay K2, NO contact (operating condition)

UH9018/_1_:

Terminal designation	Signal description
L1, L2, L3	Connection nominal voltage (L1, L2, L3)
T1, T2, T3	Connection Motor (U, V, W)
X1, X2	Control input (Start/Stop)
X3, X4	Connection for Motor PTC
11,14	Indicator relay K1, NO contact (error)
21,24	Indicator relay K2, NO contact (operating condition)

Nominal voltage:	3 AC $400 \mathrm{~V} \pm 10 \%$ Special voltages: 230 V ; 480 V ; Wide voltage input 200 ... 480 V only with external voltage DC 24 V on X1 / X4
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Rated current:	3.5; 6.5; 12; 16 A
Nominal motor power at P_{N} at 400 V : Min. motor power:	1.5; 3; 5.5; 7.5 kW approx. $0.2 \mathrm{P}_{\mathrm{N}}$
Staring voltage (at devices with voltage ramp):	$40 \ldots 80 \% U_{N}$
Setting range current limit (at devices with current control):	$2 \ldots 5 I_{N}$
Setting range starting time (at devices with voltage ramp):	$0.5 \ldots 10 \mathrm{~s}$
Deceleration time:	0.25 ... 10 s
Setting range of the gradient of current rise (at devices with current control):	0 ... 100%
Recovery time:	300 ms
Switching frequency at $3 \times I_{N}$ and $t_{\text {on }}=5 \mathrm{~s}$: Semiconductor fuse	150/h; 70/h; 30/h; 15/h
1^{2} t-value:	$390 \mathrm{~A}^{2} \mathrm{~s} ; 720 \mathrm{~A}^{2} \mathrm{~s} ; 4000 \mathrm{~A}^{2} \mathrm{~S} ; 4000 \mathrm{~A}^{2} \mathrm{~s}$;
General Data	
Temperature range:	$0 \ldots+45^{\circ} \mathrm{C}$
Storage temperature:	- $25 \ldots+70^{\circ} \mathrm{C}$
Altitude:	up to 1.000 m
Degree of protection:	IP 20
Climate resistance:	25/075/04 IEC/EN 60 068-1
Wire connection	
Load terminals:	up to $2.5 \mathrm{~mm}^{2}$
Control terminals:	$1 \times 1,5 \mathrm{~mm}^{2}$ solid
Mounting:	DIN-rail mounting
Weight:	400 g
Dimensions	

Width \mathbf{x} height \mathbf{x} depth: $45 \times 107 \times 121 \mathrm{~mm}$

Standard Types

UH 90183 AC 400 V $50 / 60 \mathrm{~Hz} \quad 1.5 \mathrm{~kW}$
Article number: 0066471

- Nominal voltage: 3 AC 400 V
- Nominal motor power: 1.5 kW
- Width: 45 mm
- With Kickstart- (Boost-) function
- With voltage ramp
- Starting time: $0.5 \ldots 10 \mathrm{~s}$
- Deceleration time: $0.25 \ldots 10 \mathrm{~s}$
- Starting voltage: $40 \ldots 80 \% \mathrm{U}_{\mathrm{N}}$

UH 9018/100 3 AC 400 V $50 / 60 \mathrm{~Hz} 7.5 \mathrm{~kW}$
Article number: 0066472

- Nominal voltage: 3 AC 400 V
- Nominal motor power: $\quad 7.5$ kW
- Width: 45 mm
- With Kickstart- (Boost-) function
- With heat sink PTC
- With 2 Indicator relays: K1 (11, 14): Alarm

With current control

- Adjustment of the gradient of current rise: $0 \ldots 100 \%$
- Current limit: $\quad 2 \ldots 5 \times I_{N}$
- Deceleration time: $0.25 \ldots 10 \mathrm{~s}$

Ordering example

Control Inputs

As described in Principles of operation UH 9018 are normally controlled by a voltfree contact on terminals X1-X2
However, if external DC voltage control is desired UH 9018 can be set at the factory to accept a DC control voltage of $10 \ldots 42 \mathrm{~V}$ DC at terminals X2, X4 .

When the voltfree contact across terminals X1 and X2 is closed, the softstart function will commence. When the contact is opened, the softstop function will commence.

The motor can be started with a boost (variants UH 9018/_0_) with the help of a potential-free contact on X1, X3. Thereby at the beginning of the soft starting, the motor voltage increases for a short impulse (500ms) to 85% of the nominal voltage. This function effects an increased breakaway torque in the drive and makes possible the starting of the drives with a high holding torque at standstill. Afterwards, the soft starting continues with the adjusted voltage ramp.
Optionally, the boost function can be started also with external control voltage of DC $10 \ldots 24 \mathrm{~V}$ on X3, X4.
The device variants UH 9018/_1_ do not have a boost function. A motor PTC can be connected there to the control terminals X3, X4 for monitoring the motor temperature.

Setting facilities

Devices with voltage ramp UH 9018/0_ _:

Potentiometer	Description	Initial setting
$\mathrm{U}_{\text {start }}$	starting voltage	fully anti-clockwise
$\mathrm{t}_{\text {on }}$	ramp up time	middle of scale
$\mathrm{t}_{\text {off }}$	deceleration time	fully anti-clockwise

Devices with current control UH 9018/1_ _ :

Potentiometer	Description	Initial setting
x_{N}	Current limit	middle of scale
$\mathrm{t}_{\text {int }}$	gradient of current rise	middle of scale
$\mathrm{t}_{\text {off }}$	deceleration time	fully anti-clockwise

Set up Procedure

Softstart with voltage ramp:

1. Start the motor via control input $X 1 / X 2$ and turn potentiometer " $U_{\text {start }}$ " up until the motor starts to turn without excessive humming
2. Adjust potentiometer " t_{on} " to give desired ramp time.

Attention: If the ramp-up time is adjusted to short, the internal bridging
 contact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Softstart with current control:

The motor is accelerated to the motor nominal speed at the preset current limit of $2 \ldots 5 \mathrm{xl}_{\mathrm{N}}$. To this purpose, the desired start-up current is set with the potentiometer xI_{N} with respect to the nominal speed of the device. The gradient of the increase of the current can be adjusted with the potentiometer tint and thus the control characteristics and the motor acceleration can be adapted to the drive. The motor current is measured in the uncontrolled phase L2/T2 which in the case of two-phase-controlled soft-start devices, for technical reasons, conducts the highest current. The preset current limit is related to the motor current in phase L2/T2. The current in the two other motor phases is lower by about 35%.

Attention: If the current limit is set too low, the motor will not accelerate to full speed and will remain in a state of intermediate speed. After a certain time, the device will interrupt the starting process and will change to fault mode in order not to overload the device and the motor. What is important in the selection of the current limit is to pay attention to the changes in the load, e.g. with the time (mechanical change, wear, ...) or also the thermal changes, etc. The adjustment must be such that also in the worst-case scenario the drive can accelerate to full speed without problems.

Softstop:

- During softstop the device has to be connected to the voltage.
- Select softstop by opening control input X1/X2.
- Adjust $\mathrm{t}_{\text {off }}$ until the required stopping time is achieved.

Fault

The UH 9018 monitors different fault states. If a fault is recognised, the device signalises the error by blinking of the yellow LED at a constant frequency. When there is a fault, the signal relay K 1 is opened. The different error states are indicated by different blinking sequences of the yellow LED.

Fault Description

Fault	yellow LED flasches	operating condition
1	$1 \times$ time with short space	undervoltage Electronic power supply
2	$2 \times$ times with short space	heat sink temperature to high Device thermally overloaded or motor overtemperature (at con- nected motor-PTC) variant /_1_
3	$3 \times$ times with short space	current control time out
4	$4 \times$ times with short space	Zero crossings error Network or motor circuit is faulty
5	$5 \times$ times with short space	phase failure in phase 1
6	$6 \times$ times with short space	phase failure in phase 2
7	$7 \times$ times with short space	phase failure in phase 3
8	$8 \times$ times with short space	firing error in phase 1
9	$10 \times$ times with short space	firing error in phase 3
10	$11 \times$ times with short space	failure in electronics

Troubleshooting

In the case of a fault it is proceeded as follows:
Fault 1: Defect in the internal control electronics. The device must be checked by the manufacturer.

Fault 2: \quad Check the starting frequency and the starting current or the maximum ambient temperature. Leave the device to cool off. The dissipation of the heat can be improved by forced cooling-off with a fan installed under the device.

Fault 3: \quad The motor does not reach the end speed with the preset maximum starting current. The value of the starting current can be increased with the potentiometer xI_{N}.

Attention!

After a performed disconnection due to a timeout, the device and the motor must be given a chance to cool off. An immediate start-up can lead to destruction.

Fault 4-7: \quad The power supply is missing, the motor circuit is interrupted, the power semiconductor is defective, the motor is defective; check the motor and the wiring. Send the device to be checked by the manufacturer.

Fault 8-9: \quad Check the motor wiring or defective thyristor module. Send the device to be checked by the manufacturer.

Fault 10: Send the device to be checked by the manufacturer.

Resetting the fault

There are two possibilities for resetting a device fault.

1. As default, the resetting of the fault message takes place by turning off and then on the power supply.
2. The device can be programmed in such a way that a fault reset is possible by a new start-up (opening and then closing the start input). To this purpose, the following approach must be observed.

First the device must be wired according to the following connection diagrams:

Then the power supply is turned on. After a short time, the yellow LED starts blinking with different frequency depending on the preset reset mode.
low flasher frequency: Fault reset by turning on and off of the power supply voltage (standard setting)
high flasher frequency: Fault reset by restarting
By opening and closing the start input, the reset mode is changed and the yellow LED starts blinking with the corresponding blinking frequency. The new mode is permanently stored.

Now the power supply can be again turned off and the device is incorporated in the application.

Warning message!

In any case, the cause of the fault must be determined and corrected by trained personnel. Only then the device can be put again into operation.

Monitoring Output	
Indicator relay K1 (11, 14):	Fault: Contact are closed
Indicator relay K2 (21, 24):	Bypass: After the end of the start ramp, energizes the bypass relay

Safety Note

- Never clear a fault when the device is switched on

Attention: This device can be started by potential-free contact or control with DC $10 \ldots 24 \mathrm{~V}$ while connected directly to the mains
 without contactor (see application example)
Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Connection Examples

Softstart- and softstop function
(Devices without external control voltage)

Softstart- and softstop function
(Devices with external control voltage))

Softstart- and softstop function at UH 9018/_1_

Function diagram

Block Diagram

Your Advantages

- For starting current limitation in heat pumps to provide stable mains conditions
- Only one small device 67.5 mm for
softstart, motor protection, voltage- and phase sequence monitoring
- Soft start and minimized staring current
- Extended service life of AC - motors and mechanical drive system
- Motor power up to $18,5 \mathrm{~kW}$
- Short ramp up time

25 A : < 200 ms
$36 \mathrm{~A}:<300 \mathrm{~ms}$

- Energy saving by bridging of the semiconductors after softstart
- Symmetrical staring current

Features

- According to IEC/EN 60 947-4-2
- 3-phase controlled with integrated bypass relays
- Phase sequence monitoring
- Undervoltage monitoring
- Overvoltage monitoring
- Blocked motor monitoring in bypass mode
- Integrated motor protection to class 10 acc. to IEC/EN 60947-4-2
- Starting current limitation
- Thyristor monitoring
- Detection of missing load
- Automatic frequency detection of supply voltage
- Temperature monitoring of power semiconductors

Approvals and Markings

Applications

- Softstarter for compressor motors

Product Description

The PF 9029 from the MINISTART-family is a robust electronic control unit for soft starting of compressor motors with integrated monitoring functions. After successful starting the semicon-ductors are bridged by relays to minimize the power dissipation of the units.

Function Notes

Variation of speed is not possible with this device.

Device Description

Failure Mode

The softstarter is monitoring different parameters. If failure is detected the unit switches off. In failure mode a red LED with flash code signals the fault. The failure mode can be reset by pressing the reset button or by disconnecting the power supply.

Undervoltage monitoring

To make sure the motor is operated with the correct voltage the voltage is monitored. The voltage is not monitored in ramp up mode. If the voltage drops below 330 V for longer than 1 s the unit switches to failure mode.

Overvoltage detection

To make sure the motor is operated with the correct voltage the voltage is monitored. The voltage is not monitored in ramp up mode. If the voltage rises above 470 V for longer than 1 s the unit switches to failure mode.

Phase sequence monitoring

The phase sequence monitoring function monitors clockwise phase sequence of the 3-phase system. An anti-clockwise sequence forces the unit to failure mode.

Shortcircuited Thyristor

Before each softstart the power-semiconductors are tested for short circuit A detected short circuit forces the unit to failure mode. For short circuit test the motor must be connected.

Motor not connected

Before each softstart it is tested that the motor is correctly connected to the unit. This test avoids that the motor starts on 2 phases and gets faulty. Wrong connection forces the unit to failure mode.

Overtemperature

The temperature of the semiconductors is measured by NTC sensor. Overtemperature forces the unit into failure mode.

Frequency detection

To achieve a correct function the actual frequency has to be known. The frequency is monitored after power on or reset. If the frequency is outside the limits $50 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$ or $60 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$ the unit switches to failure mode.

Blocking protection

In Bypass mode a blocking of the motor is detected by current monitoring. If the current exceeds 4 times the nominal current of the motor, the unit recognizes motor blocking. The unit switches to failure mode.

Overload protection

The unit incorporates an electronic overload protection, which is realized by monitoring the current in one phase. Overload protection class 10 is a fix setting. The response current can be adjusted with a potentiometer by adjusting the motor rated current. When the I2t value is overridden the unit switches into failure mode. The $\mathrm{I}^{2} \mathrm{t}$ value is reset with the reset function.

Note: At loss of the auxiliary supply the actual $\mathrm{I}^{2} \mathrm{t}$-value is stored. At restart the $\mathrm{I}^{2} \mathrm{t}$-value is recalled and used for operation independent how long the motor was cooling down.

Limitation of starting current

By starting current limitation the peak current can be limited. The load on the supply network is lower. The time limit of the current is monitored and if the starting time exceeds the limit of 5 s a failure signal is indicated. The current limit is fixed to 2.5 times the motor nominal current.

Indication

The device status is indicated with different coloured LEDs and flash code

LED green: Device ready
LED yellow: On, when bridging relay active
LED red: \quad Flashes if error (see flash codes)

Control Elements

Potentiometer I_{e} : Nominal current for overload protection and starting current limitation.

Note: The potentiometer setting is only read when connecting the power supply or on reset at failure mode.

Reset of failure mode after failure is removed and confirming potentiometer setting.

Control Circuit

The control input works with a voltage of AC/DC $20 \ldots 300 \mathrm{~V}$.

今After reset or disconnecting the power supply the unit initiates a softstart, if voltage is connected to control input.

Outputs

One output relay is available.
The monitoring contact "operation" closes when the start signal is connected. It opens after the signal is disconnected or when an error occurs.

Auxiliary Supply

To monitor phase failure on all 3 phases an external auxiliary supply of AC 230 V is necessary.

Fault Indication by Flashing Code

During normal operation failure messages may occur. The messages are indicated by a flashing sequence of the red LEDO

Flashes *)	Fault	Possible cause	Troubleshooting
1 x fast	Motor voltage is missing	Defective fuse, faulty wiring	Check fuses and wiring
1	Device temperature to high	Duty cycle exceeded	Reduce operating time, use heat sink if possible
2	Mains frequency out of tolerance	Wrong frequency	Device is not suitable for actual frequency. Contact manufacturer
3	Phase sequence incorrect	Load voltage incorrect. Clockwise phase sequence is mandatory for correct function	Check wiring, change 2 phases
4	Undervoltage detected	Load voltage under 330V	Check load voltage
5	Overload detected	Motor overloaded	Reduce operating time, Motor rough-running? Adjust nominal current
6	Motor blocked in Bypass-Mode	Motor stalled in operation	Check motor
7	Thyristor short-circuit	Faulty thyristor detected	Device has to be repaired
9	Motor connected incorrectly	One or more wires to the motor are interrupted	Check wiring to motor
10	Temperature sensor defective	Interruption or short circuit in temperature sensor of power semiconductors	Device has to be repaired
*) No.: Number of flash pulses in a series			

Technical Data	
Auxiliary supply:	AC $230 \mathrm{~V} \pm 10 \%$
Overvoltage protection:	Varistor AC 275 V
Starting voltage:	3 AC 220 V
Ramp up time:	$0.2 \mathrm{~s} \quad 0.3 \mathrm{~s}$
Undervoltage protection:	3 AC 330 V , for more than 1 s
Overvoltage protection:	3 AC 470 V , for more than 1 s
Resolution of	
voltage measurement:	AC 1.5 V
Nominal consumption:	4 VA
Short circuit detection	5... 25 A $10 \ldots 36 \mathrm{~A}$
Mode 1:	$35 \mathrm{AgL} / \mathrm{gG} \quad 50 \mathrm{AgG} / \mathrm{gL}$
Mode 2:	$5510 \mathrm{~A}^{2} \mathrm{~s} \quad 5500 \mathrm{~A}^{2} \mathrm{~s}$
Control Input	
Control voltage:	AC/DC $20 \ldots 300 \mathrm{~V}$
Control input current:	$0.2 \mathrm{~mA} . . .3 .1 \mathrm{~mA}$
Start up delay:	10 ... 50 ms
Release delay:	200 ms
Indicator output	
Contacts:	1 changeover contact
Switching capacity to AC 15	
NO contacts:	$3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
NC contacts:	$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
Electriscal life to AC 15 at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$: Permissible switching frequency:	2×10^{5} switching cycles
	max. 1800 switching cycles / h
Short circuit strength max. fuse rating:	$4 \mathrm{AgG} / \mathrm{gL}$ IEC/EN 60 947-5-1
Mechanical life:	$\geq 10^{8}$ switching cycle

Output / Load Circuit

Load circuit Nominal operating	
voltage L1-L3:	3 AC 340 ... 460 V
Peak reverse voltage:	1200 V
Overvoltage protection:	Varistor 510 V
Nominal frequency:	$50 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$ or $60 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$
Nominal operating current I_{e} :	25 A (AC-53b) 36 A
Setting range I_{e} :	$5 \mathrm{~A} . .25 \mathrm{~A} \quad 10 \mathrm{~A}$... 36 A
Stoßstrom:	1050 A ($\mathrm{tp}=10 \mathrm{~ms}$)
Load limit integral:	$5500 \mathrm{~A}^{2} \mathrm{~s}$
Resolution current	
	0.1A 0.2 A
Usage category	$\mathrm{I}_{6}:$ AC-53b: $2.5-0.5: 60$
Number of starts per hour:	10
Overload protection:	Class 10
Blocking protection, response value:	$4 \times \mathrm{I}_{\mathrm{e}}$, for longer than 1 s in bypass mode
Current limiting:	$2.5 \times \mathrm{I}_{\mathrm{e}} \pm 10 \%$ during ramp up
General Data	

General Data
Temperature range

operation:	$0 \ldots+50^{\circ} \mathrm{C}$
storage:	$-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$
Relative air humidity:	$<95 \%$, no condensation at $40^{\circ} \mathrm{C}$
Altitude:	$<1.000 \mathrm{~m}$

Altitude:

$0 \ldots .+50^{\circ} \mathrm{C}$
$<95 \%$, no condensation at $40^{\circ} \mathrm{C}$
< 1.000 m

Clearance and Creepage distances

rated impulse voltage /
pollution degree
Mains-/Motor voltage-
heat sink:
6 kV / 2
Mains-/Motor voltage - control
voltage:
Mains-/Motor voltageindicator relay:
Overvoltage category:

EMC

Interference resistance
Electrostatic discharge (ESD): 8 kV (air)
HF-irradiation

$80 \mathrm{MHz} \ldots 1.0 \mathrm{GHz}:$	$10 \mathrm{~V} / \mathrm{m}$	
$1.0 \mathrm{GHz} \ldots 2.5 \mathrm{GHz}:$	$3 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
$2.5 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}:$	$1 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	2 kV	IEC/EN 61 000-4-3

Fast transients:

6 kV / 2

6 kV / 2
III
$10 \mathrm{~V} / \mathrm{m}$
,

IEC/EN 60 947-4-2

IEC/EN 60 947-4-2

IEC/EN 60 947-4-2

Technical Data

Surge voltage
between

wires for power supply:	1 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
HF-wire guided:	10 V	IEC/EN 61 000-4-6
Voltage dips:		IEC/EN 61 000-4-11

Limit value class B IEC/EN 60 947-4-2
Limit value class B IEC/EN 60 947-4-2
IEC/EN 61 000-3-11
IP $40 \quad$ IEC/EN 60529

IP 20 IEC/EN 60529
thermoplastic with V0 behaviour acc. to
UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6
frequency $10 \ldots 55 \mathrm{~Hz}$
$0 / 050$ / 04
IEC/EN 60 068-1
Box terminals with self-lifting
wire protection
Captive M4 Pozidriv-terminal screws
$0,5 \ldots 16 \mathrm{~mm}^{2}$ solid
$0,5 \ldots 16 \mathrm{~mm}^{2}$ mit stranded wire with sleeve DIN 46228/1
$0,5 \ldots 16 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
DIN 46228/4
21-6AWG
$12 \mathrm{~mm}-13 \mathrm{~mm}$
2.5 Nm
pluggable terminal blocks with
cage clamp terminals
0.2 - $2.5 \mathrm{~mm}^{2}$ solid
$0.2-2.5 \mathrm{~mm}^{2}$ ferruled
$0.2-2.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
DIN 46228/1
$0.2-2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
26-12 AWG
8 mm

500g
600g

Dimensions

Insulation of wires or sleeve length: Mounting torque: Control terminals Insulation of wires or sleeve length: Weight
without DIN rail mounting: with DIN rail mounting:

Width x height x depth
without DIN rail mounting: with DIN rail mounting:
$67.5 \mathrm{~mm} \times 122.5 \mathrm{~mm} \times 86.5 \mathrm{~mm}$ $67.5 \mathrm{~mm} \times 140 \mathrm{~mm} \times 95.5 \mathrm{~mm}$

Trigger characteristics

Standard Type

PF 9029.11 $3 \mathrm{AC} 400 \mathrm{~V} 50 \mathrm{~Hz} \quad \mathrm{U}_{\mathrm{H}} 230 \mathrm{~V}$ Hz 25 A
Article number: 0065815

- Load voltage: 3 AC 400 V
- Auxiliary voltage U_{H} : 230 V
- Nominal operating current I_{e} : 25 A
- Setting range I_{e}. 5 A ... 25 A
- Width: 67.5 mm

PF 9029.11 $3 \mathrm{AC} 400 \mathrm{~V} 50 \mathrm{~Hz} \quad \mathrm{U}_{\mathrm{H}} 230 \mathrm{~V}$ Hz 36 A
Article number: 0067298

- Load voltage: 3 AC 400 V
- Auxiliary voltage U_{H} : 230 V
- Nominal operating current $I_{e}: 36$ A
- Setting range I_{e} : 10 A ... 36 A
- Width:
67.5 mm

Ordering Example

Accessories

The devices can be mounted on DIN-rail according to IEC/EN 60715 with a fixing plate.

Type:	KX4840-20
Article number:	0066204

Operation

1. Connect unit as shown in wiring example
2. Adjust Potentiometer setting "Ie" to nominal motor current.

Safety Instruction

Dangerous voltage.
Electric shock will result in death or serious injury.
Disconnect all power supplies before servicing equipment.

- Never clear a fault when the device is switched on
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.
- Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains.

Dimensions

$4 \times \varnothing$ M4 Fastening hole
Drilling pattern

Product description

The softstart/softstop devices with reversing function are mainly used for soft reversing of motors. The softart/sofstop function reduces the innertia when reversing, giving less stress to the mechanical components. Less wearing and lower maintenance cost are the result. The parameters for ramp up time and ramp down time as well as start and stop innertia are set via potentiometers. A thermistor or thermal switch can be connected to monitor the motor temperature. Non-wearing reversing by hybrid-technology.

Function Diagram

$t_{u} \quad=$ switchover delay time

Your advantages

- 3 functions in one unit
- Easy setup
- No EMC-filter necessary

Features

- According to EN 60 947-4-2
- For controlling of 3-phase motors up to 750 W
- With 2-phase softstart and softstop
- Temperature monitoring of the motors with PTC or thermal switch
- 3 potentiometer for adjustment of softstart, softstop and starting - deceleration time
- 3 LED-indicators
- Reversing with relays, softstart and softstop with thyristors
- 2×24 V-inputs for clockwise rotation, anticlockwise rotation
- short circuit proof for 24 V monitoring output
- galvanic separation of control circuit and power circuit
- Width 72 mm

Approvals and Markings

C ϵ

Application

- Conveyors
- Packaging machines
- Door and gate drives

Circuit Diagram

Connection Terminals
Terminal designation Signal description A1(+), A2 Auxiliary voltage DC L1, L2, L3 Load voltage AC T1, T2, T3 Motor connection L, R Control inputs direction of rotation GNDE Earth connection control inputs Ready Indicator output DC GND Earth Indicator output P1 Thermo sensor P2 Thermo sensor

Function

The Softstart unit RP 9210/300 includes the functions softstart, softstop and reversing. The reversing is done with relays

Temperature monitoring

To protect the motor the temperature can be monitored by PTC or thermal switch. When overtemperature is detected the power semiconductors as well as the ready output switch off. The green Ready-LED flashes code 1. This failure state is stored. After the motor cooled down a reset can be made by temporarily disconnecting the power supply to the unit.

Softstart, Softstop

The unit ramps up or down the current on two phases, therefore allowing the motor torque to build up or to be reduced slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material. The starting e.g. deceleration time is adjustable by potentiometer.

Control inputs

Right and left rotation is selected via 2 control inputs. If both inputs are activated the one that came first has priority. When the control signal is disconnected the motor is braked for the adjusted braking time. Now the sense of rotation is inverted and the motor is softstarted in the opposite direction.

Monitoring output Ready
If no failure is indicated this short circuit proof output is on +24 V .

Indication

green LED-Ready ON:	continuous flashes	- supply connected - with failure code
yellow LED R:	continuous flashes	- Motor turns right - softstarting or braking at right rotation
yellow LED L:	continuous flashes	- Motor turns left - softstarting or braking at left rotation
Failure codes		
	1*)	- Motor overtemperature
	2*)	- Wrong freqency
	3*)	- Phase reversal
	4*)	- Phase failure
	5*)	- Motor overcurrent

$1^{*)}-5^{*}=$ Number of flashing pulses in sequence

Setting facilities

Potentiometer $\mathrm{t}_{\text {on }}$:
Potentiometer $t_{B R}$:
Potentiometer $I_{\max }$:

- Ramp up time 1 ... 10 s
- Braking delay time 1 ... 10 s
- motor current control 0 ... 3.0 A eff.

Set-up Procedure

1. Connect motor and device according to application example. The 3 phases must be connected in correct sequence, wrong phase sequence will lead to failure (see failure code)
2. If the motor temperature sensor is not required the inputs P1 and P2 must be bridged. Turn potentiometer $t_{\text {on }}$ and $t_{\text {off }}$ fully clockwise, potentiometer $\mathrm{M}_{\text {on, off }}$ fully anticlockwise.
3. Power up the unit and begin softstart via inputs R or L
4. Turn potentiometer $\mathrm{M}_{\text {on, off }}$ fully clockwise, up to motor starts
5. Adjust the start up time by by turning ton to the required value. At correct setting, the motor should ramp up continuously to full speed.
6. Adjust the deceleration time to the required value.

Safety Notes

- Never clear a fault when the device is switched on

Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG).
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.
- Installation and maintenance must only be carried out when the supply is disconnected.
- There is no galvanic separation between auxiliary supply (A1, A2) and measuring circuit (P1, P2). Necessary insulation measures have to be provided according to the application.

Application Example

BI 9025 up to 15 kW

BL 9025 up to 11 kW

Function Diagram

t_{0} : start
$\mathrm{t}_{0}-\mathrm{t}_{1}$: ramp up time
$\mathrm{t}_{2}-\mathrm{t}_{3}$: ramp down time

- Softstart and softstop function
- 2-phase control
- For motors up to 15 kW at 3 AC 400 V
- Acceleration and deceleration time resp. starting and switch-off torque are separately adjustable
- Wide input voltage range of the power semiconductors
- Galvanic isolation of control input with wide voltage range up to AC/DC 480 V control input
- 3 auxiliary voltages at the device up to AC 230 V
- Integrated overtemperature monitoring
- LED indication
- According to EN 60 947-4-2
- 90 mm width

Additional Information About This Topic

For motors up to 5.5 kW we recommend the softstarter BA 9018 or BA 9019.

Approvals and Markings

Applications

- Motor with gear, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Packaging machines, door-drives
- Start current limiting on 3-phase motors

Function

Softstarters are electronic devices designed to enable 1-phase or 3 -phase induction motors to start smoothly. The devices slowly ramps up the current on two phases, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material.
When the motor is up to full speed the semiconcutors in the device are bridged to prevent internal power losses and heat build up. In addition the device allows a softstop function prolonging the stop time of the motor, preventing high counter torques from abruptly stopping the motor.

Block Diagram

Indication

green LED:
yellow LED:
red LED:
on, when supply connected

- on, when semiconductors bridged - flashing during ramp up or down Continuously on: Temperature fault Flashing: Attention: Phase reversal

Notes

Variation of speed is not possible with this device. Without load a softstart cannot be achieved. It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended.
The softstarter must not be operated with capacitive load e.g. power factor compensation on the output.

Technical Data		
Nominal voltage: Nominal frequency:	$\begin{aligned} & 3 \text { AC } 200 \mathrm{~V}-15 \% \ldots 480 \mathrm{~V}+15 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	
	Bl 9025	BL 9025
Width:	90 mm	90 mm
Nominal motor power P_{N} at $\begin{aligned} & 480 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 200 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 18.5 \mathrm{~kW} \\ 15 \mathrm{~kW} \\ 7.5 \mathrm{~kW} \\ \hline \end{array}$	15 kW 11 kW 5.5 kW
Nominal current I_{N}	32 A	25 A
Switching frequency at $3 \times I_{N}, 10 \mathrm{~s}, \vartheta_{\mu}=45^{\circ} \mathrm{C}$:	$30 / \mathrm{h}$	10 / h
Time between 2 starts	min. 110 s	min. 350 s

Min. motor power:
Start torque:
Ramp time:
Deceleration torque:
Deceleration time:
Recovery time:
Auxiliary voltage:
A1/A2, AC $115 \mathrm{~V}+10 \%,-15 \%$: bridge $\mathrm{A} 1-\mathrm{Y} 1$
A1/A2, AC $230 \mathrm{~V}+10 \%,-15 \%$: bridge Y1-Y2
A3/A4, DC $24 \mathrm{~V}+10 \%,-15 \%$: polarity protected
Power consumption: 3 W
Residual ripple: 5%
Semiconductor fuse: 50 A superfast

Control Input

Voltage range $\mathrm{X} 1 / \mathrm{X} 2$:

Softstart:
 $>20 \mathrm{~V}$

Softstop:

General Data

Temperature range:

It is possible to operate the unit at $40^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$, the number of starts per hour must then be reduced by $1.5 \% /{ }^{\circ} \mathrm{C}$ temperature increase.

Storage temperature:
Usage category:
Clearance and creepage

distances

rated impulse voltage /
pollution degree
Control voltage to auxiliary voltage, motor voltage:
Auxiliary voltage to motor voltage:
bridge A2-Y2

AC/DC 24-480 V
$<5 \mathrm{~V}$
$0 \ldots+40^{\circ} \mathrm{C}$
$-25 \ldots+75^{\circ} \mathrm{C}$
according to EN 60 947-4-2, AC-53 b
approx. 0.1 P_{N}
30 ... 80 \%
$1 \ldots 10 \mathrm{~s}$
30 ... 80%
$1 \ldots 20 \mathrm{~s}$
200 ms
ridge Y1-Y2

Technical Data

EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
wire for power supply: 1 kV
8 kV (air)
IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m}$
IEC/EN 61 000-4-3
2 kV
IEC/EN 61 000-4-4
between wire and ground:
Degree of protection
Housing:
2 kV
IP 40
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5

Terminals:
Vibration resistance:
Climate resistance:
Wire connection
Load terminals:
Control terminals:

Wire fixing

Load terminals:

Control terminals:

Mounting:

Weight

BI 9025:	870 g
BL 9025:	835 g

Width \mathbf{x} height \mathbf{x} depth: $\quad 90 \times 85 \times 121 \mathrm{~mm}$

Standard Type

BL 90253 AC 200 ... 480 V 50/60 Hz 11 kW
Article number: 0050957

- Nominal voltage: 3 AC 200 ... 480 V
- Nominal motor power at AC 400 V : $\quad 11 \mathrm{~kW}$
- Width: 90 mm

Odering Example

BI 9025 3 AC $200 \ldots 480 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz} \quad 15 \mathrm{~kW}$

Control Input

If a voltage of more than 20 V is connected to terminals $\mathrm{X} 1 / \mathrm{X} 2$, the device begins with softstart. If the voltage falls lower than 5 V the device will softstop.

Adjustment Facilities

Potentiometer	Description	Initial setting
$M_{\text {on }}$	Starting voltage	fully anti-clockwise
$t_{\text {on }}$	Ramp-up time	fully clockwise
$M_{\text {off }}$	Deceleration torque	fully clockwise
$t_{\text {off }}$	Deceleration time	fully clockwise

Set-up Procedure

Set potentiometer " $\mathrm{M}_{\text {on }}$ " to minimum (fully anti-clockwise).
Set potentiometer " $M_{\text {off }}$ " to maximum (fully clockwise).
Set potentiometer "t ${ }^{\text {on }}$ " to maximum (fully clockwise).
Set potentiometer "to to to maximum (fully clockwise).
Start the motor and turn potentiometer " $\mathrm{M}_{\text {on }}$ " up until the motor starts to turn without excessive humming.
Stop the motor and restart.
Adjust potentiometer " t_{on} " to give the desired ramp time.
Stop and restart the motor.
Adjust potentiometer " $\mathrm{M}_{\text {off }}$ " until the motor starts to visibly slow down at the initation of the softstop cycle.
Stop and restart the motor.
Adjust potentiometer " $\mathrm{t}_{\mathrm{off}}$ " to give the desired deceleration time.
Stop and restart the motor, readjusting the potentiometers until the desired starting/stopping characteristics are achieved.
During softstop the device must be connected to the 3 -phase system.

- Attention: If the ramp-up time is adjusted to short, the internal bridging contact closes before the motor is on full speed.
This may damage the bridging contactor or bridging relay.

Temperature Monitoring

$\mathrm{BH} / \mathrm{BL} / \mathrm{BI} 9025$ features overtemperature monitoring of its internal power semiconductors. When the safe running temperature is exceeded the power semiconductors will turn off and a red LED on the front of the unit will illuminate. BI/BL 9025 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage. An LED indicates the fault (see fault detection).

Safety Notes

Never clear a fault when the device is switched on
Attention: This device can be started by potential-free contact, while
 connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Connection Example

Softstart and softstop

Phase: 3 AC 400 V

Your Advantages

- Softstart and brake in one unit
- Easy wiring
- Space saving

Features

- According to IEC/EN 60 947-4-2
- 2-phase motor control
- For motors up to 15 kW at 3 AC 400 V
- Separate settings for start and brake time, as well as starting and braking torque
- Galvanic isolation of control input with wide voltage range up to AC/DC 230 V
- No external motor or braking contactor necessary
- 3 auxiliary voltages up to 230 V
- monitors undervoltage and phase sequence
- 2 relay outputs for indication of status and fault
- LED-indication
- As option without auxiliary supply
- As option with voltfree contacts for start and stop
- As option with input to detect motor temperature
- BI 9028 up to $7.5 \mathrm{~kW}: 67.5 \mathrm{~mm}$ width BI 9028 up to $15 \mathrm{~kW}: 90 \mathrm{~mm}$ width

Approvals and Markings

C ϵ

Applications

- Motor with gear, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Woodworking machines, centrifuges
- Packing machines, door-drives

Block Diagrams

BI 9028 up to 15 kW

BI 9028 up to $15 \mathrm{~kW}, \mathrm{U}_{\mathrm{H}}=\mathrm{AC} 400 \mathrm{~V}$

Circuit Diagrams

BI 9028.38

BI 9028.38/001, UH = AC 400 V

[^4]

BI 9028.38/001

BI 9028.38/010

Connection Terminal
Terminal designation Signal description X1, X2, X3, X4 Start-, Stopp signal P1, P2, P3 Thermistor 11, 12, 14 Indicator relay Motor on 21, 22, 24 Indicator relay device ready A1, A2 Auxiliary voltage main A3(+), A4 Auxiliary voltage DC 24 V Y1, Y2 Switching 115 V / 230 V L1 Phase voltage L1 L2 Phase voltage L2 L3 Phase voltage L3 T1 Motor connection T1 T2 Motor connection T2 T3 Motor connection T3

$$
\begin{array}{lll}
& t_{2}-t_{3} & : \\
t_{2}-t_{3}
\end{array}: \begin{aligned}
& \text { braking time } \\
& \text { deceleration time }
\end{aligned}
$$

BI 9028.38/_ _1

$$
\begin{aligned}
& \mathrm{t}_{0}: \\
& \mathrm{t}_{0}-\mathrm{t}_{1} \text { start } \\
& \mathrm{t}_{2}-\mathrm{t}_{3} \text { softstarttime } \\
& \text { brakingdelaytime }
\end{aligned}
$$

Function

Softstarters are electronic devices designed to enable 1-phase or 3 -phase induction motors to start smoothly. The devices slowly ramps up the current on two phases, therefore allowing the motor torque to build up slowly. This reduces the mechanical stress on the machine and prevents damage to conveyed material.
These features allow cost saving constructions of mechanical gear. External motor or brake contactors are not neccessary.

Start/Stop switch

When the motor is on full speed after the starting with start/stop switch S the semiconductors are bridged with internal relay contacts to prevent internal power losses and heat built up.
When stopping the motor via start/stop switch S braking is started. The braking current flows for the adjusted time through the motor windings.
On variant /_ _1 the start and stop function is realised via bush buttons.
On variant $/ 5_{-}^{-}$the softstart and brake function are separate switching via control input X1, X3.

Monitoring relay 1 (contact 11-12-14 / 17-18)
The relay energises with the start command and de-energises after finish of braking. When a fault occurs the relay de-energises when the semiconductors swith off. The monitoring relay 1 can be used to activate a mechanical holding brake. With the variant $\mathrm{BI} 9028 / 8_{\text {_ _ and }} \mathrm{BI} 9028 / 5_{\text {_ _ the the }}$ switches when the semiconductors are bridged.

Monitoring relay 2 (contact 21-22-24 / 17-28)

This relay energises as soon as the unit is ready for operation after connecting it to power. On internal overtemperature, phase failure, wrong phase sequence and overtemperature on the motor (variant Bl 9028/_1_) the relay 2 de-energises. The power semiconductors are switched off. The internal temperature monitoring protects the thyristors. The temperature monitoring of the motor (variant BI 9028/_1_) has an input for a bimetallic contact or PTCs. The fault is reset by disconnecting the power supply temporarily after the temperature is down again.
Phase failure and phase sequence monitoring protect motor and plant. The fault is reset by disconnecting the power supply temporarily.

Input $P_{1} / P_{2} / P_{3}$ to monitor the motor temperature on variant BI 9028/_1_
To monitor overtemperature on the motor a bimetallic contact can be connected to P_{2} / P_{3}. When overtemperature is detected the power semiconductors switch off and relay 2 de-energises.
On P_{1} / P_{2} up to 6 PTC sensors can be connected. On detection of overtemperature, short circuit or broken wire (in sensor circuit) the power semiconductors switch off and relay $1+2$ de-energise.
The fault is reset by disconnecting the power supply temporarily after the temperature on the motor is down again. After every reset the unit has to be started again via control input or start/stop button.

Indication

green LED: Continuous light: when auxiliary supply connected Flashing light: while starting and braking

Monitoring relay 1
yellow LED: Continuous light: when contact 11-12-14 / 17-18 switched on

Monitoring relay 2

yellow LED: Continuous light:
when contact 21-22-24 / 17-28 switched on
Flashing light: \quad when contact 21-22-24 / 17-28 switched off
$\left.1^{*}\right): \quad$ overtemperature on thyristor (internal)
2*): overtemperature on motor or broken
wire in sensor circuit P_{1} / P_{2},
only at variant /01_
3*): short circuit on sensor circuit P_{1} / P_{2}, only at variant /01_
$\left.4^{*}\right): \quad$ phase failure
$\left.5^{*}\right): \quad$ incorrect phase sequence, exchange connections on L1 and L2
6^{*}): incorrect frequency
7*): heat sink temperature sensor defective
$\left.8^{\star}\right): \quad$ braking time exceeded
$\left.1-8^{*}\right)=$ Number of flashing pulses in short sequence

Notes

Variation of speed is not possible with this device. Without load a softstart cannot be achieved. It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended. The softstarter must not be operated with capacitive load e.g. power factor compensation on the output.

The current in the 3 phases is different due to 2-phase control. To avoid false tripping of the motor overload it is recommended to select a suitable overload for this application.
In respect to safety of persons and plant only qualified staff is allowed to work on this device.

Technical Data

Phase / motor
voltage L1/L2/L3
with auxiliary voltage: $\quad 3$ AC $200 \mathrm{~V}-10 \% \ldots 480 \mathrm{~V}+10 \%$
without auxiliary voltage:
Nominal frequency:
3 AC $200 \mathrm{~V} \pm 10 \%$
$50 / 60 \mathrm{~Hz}$

	Width		
	67.5 mm	90 mm	90 mm
Nominal motor power P_{N} $400 \mathrm{~V}:$	7.5 kW	11 kW	15 kW
Switching frequency at $3 \times \mathrm{I}_{\mathrm{N}}, 5 \mathrm{~s}, \vartheta_{U}=20^{\circ} \mathrm{C}:$	$10 / \mathrm{h}$	$45 / \mathrm{h}$	$30 / \mathrm{h}$
permissible braking current	35 A	50 A	65 A

Min. motor power:
Start torque:
Ramp time:
Braking time:

Braking delay:

Deceleration torque
BI 9028/8_ _:
Deceleration time
BI 9028/8_ _:
Recovery time:
approx. 0.1 P_{N}
20 ... 80 \%
1... 20 s
1... 20 s
0.5 s

20 ... 80 \%

Auxiliary voltage:
Model AC 115/230 V:
A1/A2, AC $115 \mathrm{~V},+10 \%,-15 \%$: bridge $\mathrm{A} 1-\mathrm{Y} 1$
bridge A2-Y2
A1/A2, AC $230 \mathrm{~V},+10 \%,-15 \%$: bridge Y1-Y2
A3(+)/A4, DC $24 \mathrm{~V},+10 \%,-15 \%$: polarity protected
Model AC 400 V :
A1/A2, AC 400 V, +10\%, -15\%: no bridge
Power consumption:
Residual ripple max.:
Short circuit strength
7.5 kW

Line protection:
Semiconductor fuse:
11 kW
Line protection:
Semiconductor fuse:

15 kW

Line protection:
Semiconductor fuse:

Inputs

Control input X1/X2

voltage:
AC/DC $24-230 \mathrm{~V}$
Softstart when:
Braking when:
BI 9028/0_1:
Control input $\mathrm{X} 1 / \mathrm{X} 4, \mathrm{X} 3 / \mathrm{X} 4$:

alternative

Control input X1/X2, X3/X2

Voltage:

Softstart when:
Braking when:
Control input Q1/Q2:
Switching current:
$>20 \mathrm{~V}$
$<5 \mathrm{~V}$
volt free contact

AC/DC 24 V
$>15 \mathrm{~V}$
< 5 V
volt free contact
DC 10 mA

3 W
5 \%

Assignment type 1 acc. to IEC 60947-4-1 max 50 A Typ gG
Assignment type 2 acc. to IEC 60947-4-1 max. $1800 \mathrm{~A}^{2} \mathrm{~s}$

Assignment type 1 acc. to IEC 60947-4-1 max 63 A Typ gG
Assignment type 2 acc. to IEC 60947-4-1 max. $6600 \mathrm{~A}^{2} \mathrm{~s}$

Assignment type 1 acc. to IEC 60947-4-1 max. 80 A Typ gG
Assignment type 2 acc. to IEC 60947-4-1 max. 6600 A 2 s

Control Input

With BI 9028 softstart begins by closing switch S and braking starts when opening switch S . When closing S during braking, softstart begins again.

With BI 9028/0_1 softstart begins by pressing the "Start" button (X1). By actuating the "Stop" button (X3) braking is started. Pressing the "Start" button during braking activates the softstart again. If "Start" and "Stop" are activated simultaneously within 0.1 s the stop function has priority.

On BI 9028/_ _2 softstarts begins when closing the contact on Q1/Q2. By opening this contact braking or softstop is started. If Q1/Q2 is permanently closed softstart is started when applying the mains voltage on L1/L2/L3. Start of braking or softstop can only be started by opening Q1/Q2.

With BI9028/5_ _ softstat beginns with activation of input X1. The motor is connected to voltage until the signal is disconnected from the control input. With the signal on control input X3 the braking cycle is started (DC-brake) The braking cycle is finished when the signal on X3 is disconnected or on BI 9028/511 latest 60 seconds after start of the braking cycle the user has to make sure that only one control input is active.

Adjustment Facilities
Potentiometer Description Initial setting $M_{\text {on }}$ Starting voltage fully anti-clockwise $t_{\text {on }}$ Ramp-up time fully clockwise $I_{B r}$ Braking current fully anti-clockwise $t_{B r}$ Braking time fully clockwise $M_{\text {off }}$ Deceleration voltage time fully anti-clockwise $t_{\text {off }}$ Deceleration time fully clockwise

Set-up Procedure

Softstart:

1. Start the motor via control input $\mathrm{X} 1 / \mathrm{X} 2$ and turn potentiometer " $\mathrm{M}_{\text {on }}$ " up until the motor starts to turn without excessive humming.
2. Adjust potentiometer " $\mathrm{t}_{\text {on }}$ " to give desired ramp time.
3. On correct setting the motor should accelerate up to nominal speed. If the start takes too long fuses may blow, especially on motors with high inertia.

- Attention: If the ramp-up time is adjusted to short, the internal
 bridging contact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Softstop:

- During softstop the device has to be connected to the voltage.
- Select softstop by opening control input X1/X2; Q1/Q2
- Turn potentiometer $M_{\text {off }}$ to the left, until the motor starts visibly to slow down at the initiation of the softstop cycle.
- Adjust $\mathrm{t}_{\text {off }}$ until the required stopping time is achieved.

Braking:

The braking time t_{Br} and the braking current I_{Br} (max. $2 \mathrm{I}_{\mathrm{N}}$ with star connected and max. $2.8 I_{N}$ with delta connected motors, do not exceed max. permissible braking current!) is adjusted on BI 9028 . The time has to be adjusted in a way that the current is flowing until the motor is on standstill.
To avoid overload of braking device and motor, the braking current should be checked with a moving iron instrument (see connection diagram). The procedure für BI 9028/001 is the same.

Temperature Monitoring

BI 9028 features overtemperature monitoring of its internal power semiconductors. The unit is therefore protected against overheating during the set up procedure. BI 9028 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage.

Safety Notes

- Never clear a fault when the device is switched on.

Attention: This device can be started by potential-free contact,
 while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Connection Example

BI 9028 softstart and brake function with switch S

Connection Examples

BI 9028/001 softstart with start-button, brake function with stop-button

BI 9028/001, $U_{H}=A C 400 \mathrm{~V}$

Connection Examples

BI 9028/010 softstart and brake function with motor temperature monitoring

BI 9028/010 softstart - softstop with monitoring of motor temperature without auxiliary voltage.

Connection Examples

BI 9028/5_ _softstart and brake function switching via separate control inputs, auxiliary voltage $U_{H}=A C 230 \mathrm{~V}$

BI 9028/5 _ softstart and brake function switching via separate control inputs, auxiliary voltage $U_{H}=D C 24 \mathrm{~V}$

Function Diagram

t_{0} : start
$t_{0}-t_{1}$: ramp up time
$\mathrm{t}_{2}-\mathrm{t}_{3}$: deceleration time

- Softstart and softstop function
- According to IEC/EN 60 947-4-2
- 1-phase motor control
- For motors up to 5 kW at AC 230 V
- Separate settings for start and deceleration time, as well as starting and deceleration torque
- Galvanic isolation of control input with wide voltage range up to AC/DC 230 V
- 3 auxiliary voltages up to 230 V
- phase failure detection
- 2 relay outputs for indication of status and fault
- LED-indication
- 90 mm width

Approvals and Markings

C ϵ

Applications

- Motor with gear, belt or chain drive
- Fans, pumps, conveyor systems, compressors
- Woodworking machines, centrifuges
- Packing machines, door-drives

Block Diagram

Circuit Diagram

Function

Softstarters are electronic devices for smoth start and stop of motors. The device ramps the motor current up and down by phase chopping therefore allowing the motor torque built up and reduce slowly. This reduces mechanical stress on the machine during start and stop. This prevents the connected mechanical equipment against damage caused by mechanical shock of the starting and stopping torque of a direct started motor.
These features allow cost saving constructions of mechanical gear.
Monitoring relay 1 (contact 11-12-14)
The relay indicates the status of the bridged semiconductor.
Monitoring relay 2 (contact 21-22-24)
This relay energises as soon as the unit is ready for operation after connecting it to power. On internal overtemperature, phase failure, or wrong mains frequency the relay 2 de-energises. The power semiconductors are switched off. The internal temperature monitoring protects the thyristors. The fault is reset by disconnecting the power supply temporarily after the temperature is down again.

Indication		
green LED:	Continuous light: Flashing light:	when auxiliary supply connected while starting and braking
Monitoring relay 1		
yellow LED:	Continuous light:	when contact 11-12-14 switched on
Monitoring relay 2		
yellow LED:	Continuous light:	when contact 21-22-24 switched on
	Flashing light:	when contact 21-22-24 switched off
	1*):	overtemperature on thyristor (internal)
	4*):	phase failure in load circuit
	6*):	incorrect frequency
1-6*) $=$ Number of flashing pulses in sequence		

Notes

Variation of speed is not possible with this device. Without load a softstart cannot be achieved. It is recommended that the softstart is protected by superfast semiconductor fuses rated as per the current rating of the softstart or motor. However, standard line and motor protection is acceptable, but for high starting frequencies motor winding temperature monitoring is recommended. The softstarter must not be operated with capacitive load e.g. power factor compensation on the output.

In respect to safety of persons and plant only qualified staff is allowed to work on this device.

Technical Data	
Phase / motor	
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Nominal motor power P_{N} at	
230 V:	5 kW
Switching frequency at $3 \times \mathrm{I}_{\mathrm{N}}, 5 \mathrm{~s}, \vartheta_{U}=20^{\circ} \mathrm{C}$:	45 / h
Min. motor power:	approx. $0,1 \mathrm{P}_{\mathrm{N}}$
Starting voltage:	$20 . . .80 \%$
Deceleration voltage:	$20 . . .80$ \%
Ramp time:	0,25 ... 20 s
Deceleration time:	0,25 ... 20 s
Auxiliary voltage:	
Model AC 115/230 V:	
A1/A2, AC $115 \mathrm{~V},+10 \%,-15 \%$:	
	bridge A1-Y1
	bridge A2-Y2
A1/A2, AC $230 \mathrm{~V},+10 \%,-15 \%$:	
	bridge Y1-Y2
A3(+)/A4, DC $24 \mathrm{~V},+10 \%,-15 \%$:	
	polarity protected
Power consumption:	2 W
Residual ripple max.:	5 \%
Max. semiconductor fuse:	$1800 \mathrm{~A}^{2} \mathrm{~s}$

Technical Data

Inputs

Control input X1/X2

voltage:

Softstart when:
Stopstart when:
AC/DC 24-230 V
>20 V
$<5 \mathrm{~V}$

Monitoring Output

Contacts:
Thermal continuous
current $\mathrm{I}_{\mathrm{t} h}$:
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life:
to AC 15 at 3 A , AC 230 V :
Short circuit strength max. fuse rating:
2×1 changeover contacts
4 A

3 A / 230 V
IEC/EN 60 947-5-1
1 A / 230 V
IEC/EN 60 947-5-1
2×10^{5} switching cycles
4 A gL
IEC/EN 60 947-5-1

General Data

Temperature range:
Storage temperature:
$0 \ldots+45^{\circ} \mathrm{C}$
Clearance and creepage

distances

rated impulse voltage / pollution degree
Control voltage to auxiliary
voltage, motor voltage:
Auxiliary to
motor voltage:
EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
wire for power supply:
between wire and ground:
Degree of protection
Housing:
Terminals:
Vibration resistance:

Climate resistance:

Wire connection
Load terminals:

Control terminals:

Wire fixing

Load terminals:
Control terminals:
Mounting:
Weight:

1 kV
EC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-5
6 kV / 2
IEC 60 664-1

4 kV / 2
IEC 60 664-1
8 kV (air)
$10 \mathrm{~V} / \mathrm{m}$
2 kV

IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Amplitude 0,35 mm IEC/EN 60 068-2-6
frequency: $10 \ldots 55 \mathrm{~Hz}$
0 / 055 / 04
IEC/EN 60 068-1
$1 \times 10 \mathrm{~mm}^{2}$ solid
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2,5 \mathrm{~mm}^{2}$ stranded ferruled
(isolated) or
$2 \times 1,5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
DIN 46 228-1/-2/-3/-4 or
$2 \times 2,5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3
Plus-minus terminal screws M4 box terminals with wire protection Plus-minus terminal screws M3,5 box terminals with wire protection
DIN rail mounting
IEC/EN 60715
780 g

Dimensions
Width \mathbf{x} height x depth: $\quad 90 \times 85 \times 121 \mathrm{~mm}$

Standard Type

BI 9028.38/900 1 AC 100 ... 480 V 50/60 Hz 5 kW

Article number:

- Nominal motor power
at AC 400 V :
- Control input X1/X2
- Width: 90 mm

Control Input

The softstart begins by closing contact S connected to BI 9028/900. By opening contct S the deceleration begins. If contct S closes during deceleration the unit starts to ramp up again.

Adjustment Facilities		
Potentiometer	Description	Initial setting
$M_{\text {on }}$	Starting voltage	fully anti-clockwise
$\mathrm{t}_{\text {on }}$	Ramp-up time	fully clockwise
$\mathrm{M}_{\text {off }}$	Deceleration voltage	fully anti-clockwise
$\mathrm{t}_{\text {off }}$	Deceleration time	fully clockwise

Set-up Procedure

Softstart:

1. Start the motor via control input $\mathrm{X} 1 / \mathrm{X} 2$ and turn potentiometer " $\mathrm{M}_{\text {on }}{ }^{n}$ up until the motor starts to turn without excessive humming.
2. Adjust potentiometer " $\mathrm{t}_{\text {on }}$ to give desired ramp time.
3. On correct setting the motor should accelerate up to nominal speed. If the start takes too long fuses may blow, especially on motors with high inertia.

- Attention: If the ramp-up time is adjusted to short, the internal
 bridging contact closes before the motor is on full speed. This may damage the bridging contactor or bridging relay.

Softstop:

- During softstop the device has to be connected to the voltage.
- Select softstop by opening control input X1/X2
- Adjust the voltage at which the deceleration stops with Pot. $\mathrm{M}_{\text {off }}$
- Adjust the deceleration time $\mathrm{t}_{\text {off }}$.

Temperature Monitoring

BI 9028/900 features overtemperature monitoring of its internal power semiconductors. The unit is therefore protected against overheating during the set up procedure. BI 9028/900 can be reset after the semiconductors have cooled down by momentarily removing the auxiliary supply voltage.

Safety Notes

- Never clear a fault when the device is switched on.
- Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.

Connection Example

Softstart and softstop function with switch S

GI 9014
GI 9014 with DeviceNet-module

Function Diagram

Block Diagram

Your Advantages

- Protection of the drive unit
- Space and cost saving because of integrated motor protection: - motor overload, phase failure and exceed acceleration time
- Integrated bridging contactor
- Limiting of starting current prevents against mains and equipment overload
- Productivity by shortened stating times on heavy duty stating and high permissible switching frequency
- Individual configuration for every application
- Easy operation
- Comprehensive diagnostic via LED-flashing codes possible

Features

- 2-phase softstarter for asynchronous motors up to 110 kW (400 V)
- Integrated current control time
- Integrated motor protector
- Integrated bridging contactor
- Volt free coltrol input for softstart / -stop
- Connection for motor thermistor
- With two monitoring outputs, one is programmable
- DIN rail mounting with devices up to 30 kW
- Communication interfaces for Profibus, DeviceNet,

Modbus and pump controls (optional)

- Start and stop via seperate push buttons or control switch
- Motor voltage range 3 AC 200 ... 440 V or 3 AC 200 ... 575V

Adjustable functions

- Starting time monitoring
- Nominal motor current
- Current ramp
- Current limit
- Softstopp - ramp time
- Motor protection class
- Phase sequence
- Programmable relay output for indicators

Approvals and Markings

C ϵ

Application

- Escalator
- Pumps
- Fans and ventilation systems
- Conveyor systems and elevators
- Compresseors
- Mills, crushers, presses
- ... and for all applicattions with ambitious start-up and deceleration

Indication

LED "On":
LED "Bypass":

Indicate the device state
Indicate the motor state
flashes with same frequency at error
Failure codes see in operating manual GI 9014

Technical Data

Nominal voltage:
3 AC 200 ... 440 V (+10 \% / -15 \%)
3 AC 200 ... 575 V (+10 \% / -15 \%)
Nominal frequency: (at start): $45 \ldots 66 \mathrm{~Hz}$

Rated current $\mathrm{I}_{\mathrm{N}}(\mathrm{A})$:	18	34	42	48	60	75	85	100	140	170	200
Motor power at $400 \mathrm{~V}(\mathrm{~kW})$:	7,5	15	18,5	22	30	37	45	55	75	90	110
Stromrampe:	$2 \mathrm{~s}, 5 \mathrm{~s}, 15 \mathrm{~s}$ with 150%; 200% and $250 \% \mathrm{I}_{\mathrm{N}}$										
Stromgrenze:	$\begin{gathered} 250 \%, 275 \%, 300 \%, 325 \%, 350 \%, \\ 375 \%, 400 \%, 425 \%, 450 \% \text { I }_{N} \\ \hline \end{gathered}$										
Motor protection class:	adjustable										
Deceleration time:	$2 \mathrm{~s} \ldots 20 \mathrm{~s}$										
operating frequency $4 \times \mathrm{I}_{\mathrm{e}}$ and 6 s :	AC 53b 10/h					AC 53b 6/h					
Weight (kg):	2.4					4.3			6.8		

Auxiliary voltage (A1, A2, A3)

optionally:
AC 380 to 440 V (+ 10\% / - 15\%)
and AC 110 to 240 V (+ 10\% / -15\%)
AC/DC 24 V ($\pm 20 \%$)
or
< 100 mA
(at operation):
Current consumption
(at starting)
at auxiliary voltage AC $110 \ldots 440 \mathrm{~V}$: 10 A for 10 ms
at auxiliary voltage $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$: 2 A for 10 ms

Inputs

Start (terminal 01)
NO contact:
$150 \mathrm{k} \Omega$ at AC 300 V and $5.6 \mathrm{k} \Omega$ at DC 24 V
Stop (terminal 02)
NC contact:
$150 \mathrm{k} \Omega$ at AC 300 V and
$5.6 \mathrm{k} \Omega$ at DC 24 V

Outputs

Main contactor (terminals 13, 14)
NO contact: $6 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V}$ resistive /
2 A, AC $400 \mathrm{~V}, \mathrm{AC} 11$
programmable relay
(terminal 23, 24)
NO contact:
$6 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V}$ resistive /
2 A, AC 400 V, AC11

General Data

Degree of protection

Conducted radio frequency emission:

Technical Data

Surge voltage
between

wires for power supply: 1 kV between wire and ground: 2 kV	IEC/EN 61 000-4-5	
Fast transients:	$5 / 50 ~ \mu \mathrm{~s}$	IEC/EN 61 000-4-5
Voltage dip and short time interruption:		
Harmonics and distortion:	100 ms (at 40 \% nominal voltage)	
IEC 61000-2-4 (class 3), IEC/EN61800-3		

Short circuit
Short circuit current
$7.5 \ldots 37 \mathrm{~kW}: \quad 5 \mathrm{kA}$
$55 \ldots 110 \mathrm{~kW}: \quad 10 \mathrm{kA}$
Heat dissipation:
during start: $\quad 3$ W/A
during operation: 10 W

Dimensions

Width x height x depth
7.5 / 15 / 18.5 / 22 / 30 kW

37 / 45 / 55 kW:
$98 \times 203 \times 165 \mathrm{~mm}$
75 / 90 / 110 kW:
x $215 \times 193 \mathrm{~mm}$
$202 \times 240 \times 214 \mathrm{~mm}$

Standard type

GI 9014 3 AC $200 \ldots 440 \mathrm{~V} 45 \ldots 66 \mathrm{~Hz} 7.5 \mathrm{~kW}$

- Article number: 0062420
- Nominal voltage: 3 AC 200 ... 440 V
- Auxiliary voltage: DC 24 V
- Nominal motor power: $\quad 7.5$ kW
- Width: 98 mm

Ordering Example

Gl 90143 AC $200 \ldots 440 \mathrm{~V} \quad 45 / 66 \mathrm{~Hz} \quad 7,5 \mathrm{~kW} 3 \mathrm{AC} 380$ bis 440 V

Accessories

- GW 5310: Remote control
- GW 5311: Interface for remote control
- GW 5312: DeviceNet-Module
- GW 5313: Modbus-Module
- GW 5314: Profibus-Module
- GW 5316: Finger guard kit and touch protection

Connection Examples

2-wire function

Function Diagram

t_{0} : Start
$t_{1}-t_{0}$: Startingtime
$\mathrm{t}_{3}-\mathrm{t}_{2}$: Decelerationtime

Block Diagram

Your Advantages

- Simple and time saving as well as user friendly operation because of
- "Adaptive acceleration control" (self learning acceleration control)
- Graphical LCD display for parameterization and visualisation
- Adjustable bus bars for units from 360 A ... 1600 A for easy connection
- Comprehensive and customer specific motor protection functions because thermal motor modell - external motor protection is not neccessary
- Emergency operation, i.e. in the case of failure a 2-phase control allows motor operation
- Slow motion operation forward and reverse
- DC brake (contact free), therfore no brake contactor neccessary

Features

- 3-phase softstarter for asynchronous motors up to 800 kW (400 V)
- W3 connection up to 1300 kW (400V)
- Nominal current 23 ... 1600 A
- Integrated bridging contactor up to 220 A
- Programmable in- and outputs for fault indication and operation
- Motor-PTC connection possible
- Communication interfaces as option for Profibus, Devicenet or Modbus
- Start and stop via seperate push buttons or control switch

Adjustable functions:

- Emergency operation
- Slow motion operation forward and reverse
- Control input ($3 \times$ fixed, $1 \times$ programmable)
- Relay output ($3 \times$ programmable)
- 24 V DC output
- Analogue output
- Different softstart / stop modes
- 690 V units on request

Approval and Markings

Application

- Pumps
- Fans and ventilation systems
- Conveyor systems and elevators
- Compresseors
- Mills, crushers, presses
- ... and for all applicattions with ambitious start-up and deceleration

Indication

Graphical LCD display for parameterization and visualisation

Technical Data

Nominal voltage: 3 AC $200 \ldots 525$ V ($\pm 10 \%$) 3 AC $380 \ldots 690$ V ($\pm 10 \%)$
Nominal frequency: (at start): $45 \ldots 66 \mathrm{~Hz}$

Rated current $\mathrm{I}_{\mathrm{N}}(\mathrm{A}):$	23	43	53	76	105	145	170
Motor power at 400 V (kW):	-11	-18.5	-30	-45	-55	-75	-90
I 2 T-Power semicon- ductor fuse (kA²s):	1.15	8	15	15	125	125	320
Weight (kg):	3.2	3.2	3.2	3.5	4.8	16	16

Rated current $\mathrm{I}_{\mathrm{N}}(\mathrm{A}):$	220	255	380	430	650	790	930
Motor power at 400 V (kW):	-110	-132	-200	-250	-310	-400	-500
I T-Power semicon- ductor fuse (kA²s):	320	320	320	320	1200	2530	4500
Weight (kg):	16	25	50.5	50.5	53.5	53.5	53.5

Rated current $\mathrm{I}_{\mathrm{N}}(\mathrm{A}):$	1200	1410	1600
Motor power at 400 V (kW):	600	700	800
IT-Power semicon- ductor fuse (kA²s):	4500	6480	12500
Weight (kg):	140	140	140

Softstart mode:

Deceleration mode:

Operating frequency $3 \times \mathrm{I}_{\mathrm{e}}$
and 10 s :
Switching capacity
relay output:

ambient-temperature:
 Auxiliary voltage (A4, A5, A6)

either:
or:

Inputs

Nominal value for "active input":
Start $(54,55)$:
Stopp $(56,57)$:
Reset $(58,57)$:
programmable
input $(53,55)$:
Motor thermistor $(64,65)$

Outputs

Relay outputs 10 A at AC 250 V ohmic, 5 A at AC 250 V AC15 Lf 0.3 programmable outputs relay $\mathrm{A}(13,14)$:
relay $B(21,22,24)$:
relay C $(33,34)$:
Analogue output (40, 41):
Max. load:
Accuracy:
DC 24 V-output
(P24, COM) max. load:
Accuracy:

Constant current, voltage ramp,
"Adaptive acceleration control",
kick start
Softstopp, braking, free wheeling
AC53b 3.0-10:350 10 h
10 A / AC 250 V ohmic;
5 A /AC 250 V AC15
$-10^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}\left(+60^{\circ} \mathrm{C}\right.$ Derating $)$
AC 110 and 220 V (+ 10\% / - 15\%; 600 mA)
AC/DC 24 V ($\pm 20 \%$)

DC $24 \mathrm{~V}, 8 \mathrm{~mA}$
normally open
normally closed
normally closed
NO contact
response > $3.6 \mathrm{k} \Omega$;
reset < $1.6 \mathrm{k} \Omega$

Technical Data

Short circuit capability
Coordination with semiconductor fuses: Typ 2
Coordination with HRC fuses: Typ 1
23 ... 105 A
prospective current: 10 kA
145 ... 255 A
prospective current: 18 kA
360 ... 930 A
prospective current: 85 kA
1200... 1600 A
prospective current: 100 kA

General Data

Degree of protection
at 23 ... 105 A:
at $145 \ldots 1600 \mathrm{~A}$:
at 145 ... 220 A :

Temperature range

 operation:
storage temperature:

Altitude:

Humid:

Pollution degree:
Rated insulation voltage
to earth:
rated impulse voltage fuse:
Form designation:
EMC
Surge voltage
between
wires for power supply:
between wire and ground:
Fast transients:
Voltage dip and
short time interruption:
Harmonics and distortion:
Short circuit
Short circuit current
7.5 ... 37 kW :

55 ... 110 kW:
Heat dissipation:
during start:
during operation
23 ... 53 A:
76 ... 105 A:
145 ... 220 A:
during operation
255 ... 930 A:
1200 ... 1600 A:

IP 20	IEC/EN 60529
IP 00	IEC/EN 60529
IP 20 with additional finger guard kit	
(see accessories)	

$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
over $40^{\circ} \mathrm{C}$ with low nominal value
$-25 \ldots+60^{\circ} \mathrm{C}$
0 ... 1000 m
over 1000 m with low nominal value
5%... 95% relative humid 3

AC 600 V

4 kV
Bypassed or continuous,
semiconductor motor starter form 1

1 kV	IEC/EN 61 000-4-5
2 kV	IEC/EN 61 000-4-5
$5 / 50 \mu \mathrm{~s}$	
100 ms (at 40 \% nominal voltage)	
IEC 61000-2-4 (class 3), IEC/EN61800-3	

IEC 61000-2-4 (class 3), IEC/EN61800-3

5 kA
10 kA
4,5 Watt / Ampere
≤ 39 Watt (approx.)
≤ 51 Watt (approx.)
≤ 120 Watt (approx.)
4.5 Watts / Ampere (approx.)
4.5 Watts /Ampere (approx.)

Technical Data

Dimensions

Unit	$\begin{gathered} \mathrm{A} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	Weight kg
23 A	156	124	295	278	192	3.2
43 A						
53						
76					223	3.5
105						4.8
145	282	250	438	380	250	16
170						
220						
255	390	320	417	400	281	25
380	430	320	545	522	302	50.5
430						
650						
790						53.5
930						
1200	574	500	750	727	361	140
1410						
1600						

M4202_a

Ordering Example

GI 90153 AC $200 \ldots 525 \mathrm{~V} 105 \mathrm{~A} \quad \mathrm{AC} 110 \mathrm{~V}$ and 220 V

Accessories

- GW 5312: DeviceNet-Module
- GW 5313: Modbus-Module
- GW 5314: Profibus-Module
- GW 5316: Finger guard kit and touch protection

Connection Example

MINISTOP
Motor Brake Relay
BA 9034N

Function Diagram

Block Diagram

Your advantages

- Higher safety level and more economic by short stopping cycle
- Cost saving
- Compact design
- Easily appliance, no need for current measuring instrument

Features

- According to IEC/EN 60947-4-2
- For all single and 3-phase asynchronous motors
- DC-brake with one way rectification up to max. $32 \mathrm{~A}_{\text {eff }}$
- Controlled by microcontroller
- Easily fitted to existing installations
- Wear free and maintenance free
- Integrated braking contactor
- DIN-rail mounting
- Adjustable braking current (controlled current)
- With automatic standstill detection
- Variante /100
- with braking time control
- without detection of standstill
- Width: 45 mm

Approvals and Markings

Applications

- Saws
- Centrifuges
- Woodworking machines
- Textile machines
- Conveyors

Function

The supply voltage is connected to terminals L1-L2 and the interlock contact X5-X6 closes to enable the motor contactor. A green LED indicates operation. The motor can be started with the start button.
The braking DC-voltage is generated on terminals T_{1} and T_{2}. The braking sequence is as follows:
Pressing the stop button de-energises the motor contactor. The closing of X3-X4 (contact of the motor contactor) starts the braking. After a safety time the braking contactor closes for the adjusted braking time and the braking current flows through the motor.

Notes

Terminal 3 is the measuring input for standstill detection.
The BA 9034 N can be also used without connecting T3. Standstill will be detected by the current measuring. It is important to make sure, that the braking current will flow longer than 2 s before stopping the motor. If the motor stops to early, the standstill will not be detected on the braking current will flow for the maximum braking time.

To have an optimal standstill detection make sure that the braking current is greater than the nominal current of the motor.

If the back-EMF of the motor drops only slowly the unit may have a braking delay of up to 2 s .

On variant / 100 the braking current flows for the adjusted time t_{B}.

Connection Terminals

Terminal designation	Signal description
X3	Start braking, NC contact
X4	Start braking, NC contact
X5, X6	Interlock for monitor contactor
X5, X7	Star-contactor control
L1	Phase voltage L1
L2	Phase voltage L2
T1	Motor connection T1
T2	Motor connection T2
T3	Motor connection T3 (detection of standstill)

Indicators		
LED green „RUN":	- ready:	permanent on
LED red „Error"	- Mains frequency out of tolerance - Braking current is not present: - Power semiconductors overheated: - Synchronisation signal is not present: - Temperature measuring circuit defective: - Motor voltage not disconnected:	flashes 1 times flashes 2 times flashes 3 times flashes 4 times flashes 5 times flashes 6 times
LED yellow „IB"	- max. braking time 11 s Braking current is present - max. braking time 31 s Braking current is present	permanent on flashes

Technical Data

Nominal Voltage U_{N} :
Nominal frequency:
Permissing
braking current:
Duty-cycle at
max. braking current:
Braking voltage:
Max. braking time:
Braking delay for
fade out of back EMF: auto optimising (0.2 ... 2 s)
Nominal consumption
for control circuit:
Short circuit strength max. fuse rating
Line protection:
Assignment type:
Semiconductor fuse:
Assignment type:
Output
Contacts:
1 changeover contact 5 A / AC 250 V
Switching capacity
to AC 15:
NO contact: 5 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
NC contact:
Electrical life:
Mechanical life:
2 A/AC
IEC/EN 60 947-5-1

General Data

Operating mode:	Continuous operation	
Temperature range:		
Operation:	$0^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$	
Storage:	$-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$	
Relative air humidity:	93% at $45^{\circ} \mathrm{C}$	
Altitude:	< 2,000 m	
Clearance and creepage		
Rated impulse voltage /		
Relay contacts to supply vol	$4 \mathrm{kV} / 2$	IEC 60 664-1

Overvoltage category: III
EMC
Interference resistance
Electrostatic discharge (ESD): 8 kV (air) IEC/EN 61 000-4-2
HF irradiation:
$80 \mathrm{MHz} \ldots 1.0 \mathrm{GHz}: \quad 10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
1.0 GHz ... $2.5 \mathrm{GHz}: \quad 3 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
2.5 GHz ... 2.7 GHz: $\quad 1 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3
Fast transients: $\quad 2 \mathrm{kV} \quad$ IEC/EN 61 000-4-4

Surge
between

wires for power supply:	1 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
HF wire guided:	10 V	IEC/EN 61 000-4-6
Irradiation		
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing:	IP 40	IEC/EN 60529
Terminals:	IP 20	IEC/EN 60529
Housing:	Thermoplastic with V0 behaviour according to UL subject 94	
Vibration resistance:	Amplitude 0.35 mm ,	
Climate resistance:	25 / 075 / 04	IEC/EN 60 068-1
Terminal designation:	EN 50005	
Wire connection:		
Cross section:	$2 \times 2,5 \mathrm{~mm}^{2}$ solid or	
	$1 \times 1,5 \mathrm{~mm}^{2}$ stranded ferruled	
	DIN 46 228-1/-2/-3/-4	
Stripping length:	10 mm	
Wire fixing:	Flat terminals with self-lifting	
	clamping piece	IEC/EN 60 999-1
Fixing torque:	0.8 Nm	
Mounting:	DIN rail IEC/EN 60715	
Weight:	600 g	
Dimensions		

Width \mathbf{x} height x depth: $\quad 45 \times 73 \times 122 \mathrm{~mm}$

Standard Type

BA 9034 N 25 A AC $400 \mathrm{~V} 50 / 60 \mathrm{~Hz} 2 \ldots 11 \mathrm{~s}$
Article number: 0061337

- Integrated braking contactor
- DIN-rail mounting
- Width: 45 mm

Variant

BA 9034N/100: without standstill monitoring and with potentiometer for setting of braking delay time up to 15 s

Ordering example for variant

Control Input

If the connection between X3-X4 is opened, the device turns into standby mode. After closing the connection, the device starts with braking.
The device can be started also without control on X3-X4. In this case the braking delay is slightly longer up to 1.5 s .

Monitoring Output	
X5, X6:	Interlock contact for motor contactor. This contact will be open at system error, this means that the motor cannot be started! Activation of the star contactor in a star-delta circuit during braking
X5, X7:	
Adjustment Facilities	
Potentiometer	Description

Variant /100:

Potentiometer	Description	Initial setting
T_{B}	Braking delay time	Fully clockwise

The braking current is controlled according to the adjusted value in Ampere.

For optimum braking the setting of the current should be max. 1.8 to 2 times the motor current. This corresponds to the saturation current of the magnetic field used to brake the motor. A higher current only overheats the motor. A higher braking efficiency can be obtained by using 2 or more stator windings. The permitted duty cycle is depending on the actual braking current and the ambient temperature.

BA 9034N, single-phase

BA 9034N, 3-phase

BA 9034N, 3-phase, $k \Delta$-start up

Connection Example

BA $9034 \mathrm{~N} / 100$ simultaneous braking of 2 motors in serial connection for higher motor loads

BA 9034N/100 simultaneous braking of 2 motors in parallel connection for lower motor loads

Set-up Procedure

- Connect the motor braking relay BA 9034N in accordance to the connection example and make sure to connect the same phases between (L1, L2) and /T1, T2). Make sure that the interlocking contact $\mathrm{X} 5, \mathrm{X} 6$ is wired in series to the coil of the motor contactor so that the motor contactor cannot switch on, while the braking current is flowing
- Set the braking current in the potentiometer scale. To avoid overloading of the motor set the current to max. two times the nominal motor current
- The braking time of the BA 9034N cannot be adjusted. Due to the standstill detection it is self-optimizing. If L3 is not connected to T3 standstill detection is provided by measuring the braking current.
- If no standstill is detected, the BA 9034 N stops braking after 10 s

Fault Indication by Flashing Code

During normal operation failure messages may occur. The messages are indicated by a flashing sequence of the „Error" LED

Flashes	Fault	Reason	Failure recovery
1 x	Mains frequency out of tolerance	Wrong mains frequency	Device not suitable for the frequency. Contact manufacturer
2 x	Breaking current is not present	Braking current circuit broken Motor coil resistance is too high	Check the wiring Set braking current lower until the error disappears
$3 x$	Power semiconductors overheated	Permitted duty cycle exceeded	Decrease current and set the braking time longer. Wait till heat sink cools down
4 x	Synchronisations signal is not present	Unit defective or temporary interruption of power supply	The unit has to repaired Switch unit Off and On
5 x	Temperature measuring circuit defective		The unit has to repaired Wait till heat sink cools down
$6 x$	Motor is still connected to voltage while braking should start already	$$	Change motor contactor Check wiring
$7 x$	Braking relay is welded	Unit defective	The unit has to repaired

MINISTOP
Motor Brake Relay
BI 9034

Block Diagrams

BI 9034

BI 9034/800

Your advantages

- Higher safety level and more economic by short stopping cycle
- Cost saving
- Compact design
- Easy to set-up, no need for current measuring instrument

Features

- According to IEC/EN 60947-4-2
- For all single and 3-phase asynchronous motors
- DC-brake with one way rectification up to max. 60 A
- Controlled by microcontroller
- Easily fitted to existing installations
- Wear free and maintenance free
- Integrated braking contactor
- DIN-rail mounting
- Adjustable braking current up to max. 60 A (controlled current)
- With integrated star-delta starting function
- With automatic standstill detection
- Variant /800 with short circuit contactor control for reduced brake delay time
- 90 mm Width

Approvals and Markings

Applications

- Saws
- Centrifuges
- Woodworking machines
- Textile machines
- Conveyors

Function

The supply voltage is connected to terminals L1-L2 and the interlock contact X5-X6 closes to enable the motor contactor. A green LED indicates operation. The motor can be satrted with an ON push button. Depending on the position of the rotary selector switch the motor starts direct on line or with star-delta start. The braking DC-voltage is generated on terminals T_{1} and T_{2}. The braking sequence is as follows:
Pressing the stop button de-energises the motor contactor. The closing of X3-X4 (contact of the motor contactor) starts the braking. After a safety time the braking contactor closes for the adjusted braking time and the braking current flows through the motor.
To reduce the brake delay time there is a variant /800 with a short circuit contactor control. By using a contactor controlled by relay 2, the motor windings are shortcircuited on motor stop. This cuts down the back emf very fast. The braking of the motor can be started faster. The braking cycle is time controlled, no standstill detection.

Notes

Terminal 3 is the measuring input for standstill detection.
The BI 9034 can be also used without connecting T3. Standstill will be detected by the current measuring. It is important to make sure, that the braking current will flow longer than 2 s before stopping the motor. If the motor stops to early, the stillstand will not be detected and the braking current will flow for the maximum braking time.

To have an optimum standstill detection make sure that the braking current is higher than the nominal current of the motor.

If the back-EMF of the motor drops only slowly the unit may have a braking delay of up to 2 s .

The variant /800 allows to reduce the brake delay time down to 250 ms .

BI 9034 Function 1 ... 4

BI 9034 Function 5

BI 9034/800

Circuit Diagrams

BI 9034

BI 9034/800

Connection Termials

Terminal designation	Signal description
L1	Phase voltage L1
L2	Phase voltage L2
T1	Motor connection T1
T2	Motor connection T2
T3	Motor connection T3 (stand still detection)
X3	(+) Feed back motor contactor
X4	Feed back motor contactor
13,14	Monitoring relay 1
23,24	Monitoring relay 2
33,34	Monitoring relay 3
43,44	Monitoring relay 4
X6	(+) Feed back short circuit contactor (/800 only)
X7	Feed back short circuit contactor (/800 only)

LED green „RUN":	- ready:	permanent on
LED red „Error"	- Mains frequency out of tolerence - Braking current is not present: - Power semiconductors overheated: - Synchronisation signal is not present: - Temperature measuring circuit defective: - Motor voltage not diconnected: - Variant /800 only short circuit contactor not de-energized:	1 flash 2 flashes flashes 3 times flashes 4 times flashes 5 times flashes 6 times flashes 7 times
LED yellow „I ${ }_{\mathrm{Br}}$ "	- max. braking time 11 s Braking current is present - max. braking time 31 s Braking current is present	permanent on flashes

Technical Data

Nomial Voltage U_{N} :
Nomial frequency:
Permissing
braking current::
Duty-cycle at
max. braking current:
$I^{2} \mathrm{t}$-value of
power semiconductors: $\quad 6600 \mathrm{~A}^{2}$ s
Braking voltage:
Braking delay for
fade out of back EMF:
BI 9034:
BI 9034/800:
Nominal consumption
for control circuit:
Fuses
according to rule 1 :
according to rule 2 :

Output

Contacts:

Switching capacity
to AC 15
NO contact:
Electrical life:
Mechanical life:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:

AC $230 \mathrm{~V} \pm 10 \%, \mathrm{AC} 400 \mathrm{~V} \pm 10 \%$ $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$
$10 \ldots 60 \mathrm{~A}_{\text {eff }}$
40 \%

DC 10 ... 190 V
auto optimising ($0.2 \ldots 2 \mathrm{~s}$) 0.25 s via short circuit contactor 5 VA

Type gL / 60 A Type gR / $\mathrm{I}^{2} \mathrm{t} 6600 \mathrm{~A}^{2} \mathrm{~s}$

General Data

Operating mode:

Temperature range

Operation:
Storage:
Altitude:
Clearance and creepage

distance

rated impulse voltage /
pollution degree
Nominal voltage-heat sink: $\quad 6 \mathrm{kV} / 2$
Relay contacts to supply voltage: $4 \mathrm{kV} / 2$
Overvoltage:

EMC

Störfestigkeit

Electrostatic discharge (ESD): 8 kV (air)
IEC/EN 61 000-4-2
HF irradiation:

$80 \mathrm{MHz} \ldots 1.0 \mathrm{GHz}:$	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
$1.0 \mathrm{GHz} \ldots 2.5 \mathrm{GHz}:$	$3 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
$2.5 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}:$	$1 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	2 kV	IEC/EN 61 000-4-4

Ordering Example

Variants on Request

- Second control input e.g. to interrupt braking cycle
- 2 galvanic separated DC 24 V inputs e.g. for control via PLC
- Braking time $1 \ldots 31 \mathrm{~s}$ or to customers specification
- Relay function to customers specification
- Special voltages on request
- Device with time controlled braking cycle, without stand still monitoring, without star-delta-control on request

Control Input

By opening a contact (motor contactor switches on) on terminals X3 (+24vV) and X 4 (signal) star-delta starting beginns when function $1 \ldots 4$ is selected. After the adjusted time delay the delta contactor comes on and the brake units waits for the closing of the contact on X3-X4 (stop button is pressed). After closing of this contact the braking cycle starts.

The variant /800 has an extra input X6 (+24V) and X7 (signal) to give feed back from the short circuit contactor K2. The braking cycle is only started when the feed back circuit after operation of the short circuit contactor is closed again.

Monitoring Output

13, 14
23, 24:

33, 34

43, 44

Variante $/ 800$
13, 14:
23, 24:
33, 44:
43, 44:
On device failure all contacts open

Interlock contact for motor contactor.
Control of star contactor of a star delta starter during start and braking.
a) Control of delta contactor when function $1 . . .4$ is selected
b) ready signal when function 5 is selected

Standstill signal, resets on motor start or in case of a failure.

Interlocking for motor contactor
Control of short circuit contactor
Ready signal
No function

Adjustment Facilities

Bl 9034:

Potentiometer	Description	Grundeinstellung
$\mathrm{I}_{\text {Br }}$	Braking current	Fully anti-clockwise
Fkt	Function	Fully anti-clockwise

BI 9034/800:

Potentiometer	Benennung	Grundeinstellung
t_{Br}	Braking time	Fully clockwise

The braking current is controlled according to the adjusted value in Ampere.

For optimum braking the setting of the current should be max. 1.8 to 2 times the motor current. This corresponds to the saturation current of the magnetic field used to brake the motor. A higher current only overheats the motor. A higher braking efficiency can be obtained by using 2 or more stator windings. The permitted duty cycle is depending on the actual braking current and the ambient temperature.

The different functions of the brake unit can be selected with rotary switch Fkt
Fkt 1 ... 4:

Acceleration

time (star-contactor):

Star-Delta-control with internal timing

Relay 1 - Motor contactor
Relay 2 - Star-contactor
Relay 3 - Triangle contactor
Relay 4 - Stand still
Fkt 1-20 s
Fkt 2-15s
Fkt 3-10s
Fkt 4-5s
Fkt 5: \quad Star-Delta-control with external timing
Relay 1 - Motor contactor
Relay 2 - Star-contactor
Relay 3 - Ready
Relay 4 - Stand still

Set-up Procedure

- Connect the motor brake relay BI 9034 in accordance to the connection example and make sure to connect the same phases between (L1, L2) and /T1, T2). Make sure that the interlocking contact 13,14 is wired in series to the coil of the motor contactor so that the motor contactor cannot switch on, while the braking current is flowing
- Select function with rotary switch Fkt
- Set the braking current on potentiometer I_{Br} (braking time at variant/800). To avoid overloading of the motor set the current to max. two times the nominal motor current
- The braking time of the BI 9034 (exept for BI 9034/800) cannot be adjusted. Due to the standstill detection it is self-optimizing. If L3 is not connected to T3, standstill detection is provided by measuring the braking current.

Fault Indication by Flashing Code

During normal operation failure messages may occur. The messages are indicated by a flashing sequence of the „Error" LED
$\left.\begin{array}{|c|c|c|c|}\hline \text { Flashes } & \text { Fault } & \text { Reason } & \begin{array}{c}\text { Failure } \\ \text { recovery }\end{array} \\ \hline 1 \mathrm{x} & \begin{array}{c}\text { Mains } \\ \text { frequency out } \\ \text { of tolerance }\end{array} & \begin{array}{c}\text { Wrong mains } \\ \text { frequency }\end{array} & \begin{array}{c}\text { Device } \\ \text { not suitable for } \\ \text { the frequency. } \\ \text { Contact }\end{array} \\ \text { manufacturer }\end{array}\right\}$

[^5]

BI 9034 without star-delta-control

BI 9034 with external star-delta-control

BI 9034 with internal star-delta-control

BI 9034/800 with reduced brake delay time

MINISTOP
Motor Brake Relay
BN 9034, GB 9034

Function Diagram

- DC brake with one way rectifier up to 600 A
- Can be used on all asynchronous motors
- Easy to fit also into existing control circuits
- Wear and maintenance free
- Integrated braking contactor for devices up to 60 A
- Mounting on 35 mm DIN-rail for 25 A units
- Adjustable braking current
- With automatic standstill monitoring
- as option with start-delta start function
- as option with thermistor motor protection
- as option with wide voltage input

BN 9034: 200 ... 575 V
GB 9034: 200 ... 690 V

- width max. 310 mm

Approvals and Markings

C

Application

- Saws
- Centrifuges
- Woodworking machines
- Textile machines
- Transportation conveyors

Function

The supply voltage is connected to terminals L1-L2. The interlock contact for the motor contactor closes. The LED „ready" indicates that the supply voltage is connected. The motor can be started with the start button. The DC voltage for the motor windings UV is supplied from T1-T2. The external braking contactor (Devices for $>60 \mathrm{~A}$) is controlled by contact $1-2$. This contact is timed in a way, that a safety time is provided between reset of the motor contactor and start of the brake contactor. This is necessary to avoid damage of the semiconductors by induced back EMF voltage. The timing of the different functions during braking is as follows: The motor contactor is switched off and disconnects the motor. After elapse of the safety time, the brake contactor is energized and shortly after that the brake current is switched on for the adjusted braking time.

Circuit Diagrams

BN 9034

Indicators BN 9034

LED „ready":

LED „I":

On, when supply voltage connected flashing, when braking current is adjusted too high. On, when braking current is flowing.

Notes

For optimum braking effect, the braking current should be 1,8 ... 2 times the nominal motor current. This current corresponds to the necessary saturation current of the magnetic field needed for braking. Higher currents show not much more effect, but will heat up the motor. A better braking effect is achieved by using more then one motor winding for braking. The permitted braking ration relates to the braking current, the ambient temperature and the brake model.

ATTENTION The terminal W or T3 serves as measuring input for the
 standstill monitoring, with $2.5 \mathrm{~mm}^{2}$ max. cross section. With devices for > 40 A a fuse must be used to protect this connection wire at the point where the wire with smaller cross section is connected to the motor line. The choice of the fuse is suited to the used crossed section and serves the short circuit protection of the line.

Technical Data

Nominal voltage $\left[\mathrm{U}_{\mathrm{N}}\right]$:

\qquad
others to $600 \mathrm{~V} / 690 \mathrm{~V}$ on request
Nom. frequency [Hz]:

Motor power [kW] at 400 V :
Max. adjustable braking current [A]:
ED at max. braking
current [\%]:
Fuse,
superfast [A]:
Braking voltage:
Max. braking time [s]:
Back-EMF braking time delay:

50/60						
$\begin{gathered} \mathrm{BN} \\ 9034 \end{gathered}$	$\begin{gathered} \text { GB } \\ 9034 \end{gathered}$					
5.5	7.5	15	22	55	110	160
25	40	60	100	200	400	600
8	20	20	20	20	20	20
25	40	60	100	200	400	630
DC $0 \ldots 230 \mathrm{~V}$						
15						
selfoptimizing (100 ... 2500 ms)						
1.5	16	16	16	35		
					M12	M12

\qquad 6 A / AC 250 V

Connection

diameter

Box terminal [mm^{2}]:
Screw terminal:
Power consumption for electronic [VA]:
Contacts:
Temperature range
[$\left.{ }^{\circ} \mathrm{C}\right]$:
Storage temperature
[${ }^{\circ} \mathrm{C}$]:
Degree of protection:

Mounting:
Weight [kg]:
$0 \ldots+45$
\qquad

$-25 \ldots+75$	
IP 20	IP 20
$(25 \mathrm{~A})$	$(40 \ldots 600 \mathrm{~A})$

to 25 A mounting on DIN-rail to 40 A screw fixing M5

to 40 A screw fixing M5						
0.8	2.1	2.1	2.1	3.1		

Technical Data

Dimensions:

Width x height x depth

BN 9034:
$100 \times 73 \times 120 \mathrm{~mm}$
GB 9034:

	A	B	C	D	E	F
40 A	110	242	140	86	226	-
60 A	110	242	140	86	226	-
100 A	110	242	140	86	226	-
200 A	110	255	155	80	226	-
400 A	210	275	165	180	226	340
600 A	310	280	165	280	226	355
Dimensions in mm						

$40-100 \mathrm{~A}$	PE	L1	U	L2	V	PE
200 A	PE	L1	U	L2	V	
400 A	PE	L1/U	L2	V		
600 A	L1/U	PE	V	L2		
Wire connection configuration						

Standard Type

BN 903425 A AC $400 \mathrm{~V} 50 / 60 \mathrm{~Hz} 15 \mathrm{~s}$
Article number:

- Integrated braking contactor
- Mounting on 35 mm DIN-rail
- Width:

100 mm

Variant

BN 9034 /

1: Thermistor-motor protection input
1: Star-delta control
1: Output relay for standstill indication
1: Wide voltage input

$$
\left(U_{N}=200 \ldots . .575 \mathrm{~V}\right)
$$

The 4 options can be ordered single or in combinations.
The variant with wide voltage input needs an auxiliary supply of AC 230 V or Ac 24 V .

Inputs BN 9034

Opening the contact on terminal X3 and X4 makes the device ready for braking. When the contact is closed the braking current starts to flow. X14X15 monitors the motor temperatur (option)

Outputs BN 9034		
$\begin{aligned} & \text { X5, X6: } \\ & \text { X16, X17: } \\ & \text { X7, X8: } \\ & \text { X11, X12: } \\ & \text { X12, X13: } \end{aligned}$	Interlock for monitor contactor Standstill indication (option) Fault indicating output Control of Y -contactor (option) Control of Δ-contactor (option)	
Setting facilities BN 9034		
Potentiometer	function	initial setting
$\begin{aligned} & \mathrm{l} \\ & \mathrm{t}_{1} \\ & \mathrm{n}_{0} \\ & \mathrm{t}_{2} \end{aligned}$	braking current braking time standstill level 2. braking time	left end of scale middle of scale middle of scale left end of scale

Standard Type

GB 9034100 A AC $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Article number: 0056975

- Screw fixing M5
- Width: 110 mm

Variant

GB 9034 /

The 4 options can be ordered single or in combinations.
The variant with wide voltage input needs an auxiliary supply of AC 230 V .

Inputs GB 9034

Z3, Z4:	Motor PTC
Z1, Z2:	Braking interrupt
Z1, X3:	2. braking time
6,7:	Start of braking

Outputs GB 9034

1,2:
8,9:
33,34:
43,44:
43,45:
13,14
13,24
External braking contactor Interlock for motor contactor Fault indication output Control of Y -contactor (option)
Control of Δ-contactor (option)
Standstill indication (option) Braking current too low (option)

Set-up Procedure

The braking time cannot be set on the unit BN 9034. It is limited by the standstill detection. If the feedback input T3 is not connected to terminal W of the motor the standstill detection is disabled and the internal max. braking time of 15 is valid. The GB 9034 allows to set different braking times and can be used for standstill depending as well as time depending braking function. More details are available in the operating manual.

With potentiometer I the braking current can be adjusted. With a current meter (true RMS) the current should be measured so that 2 times the braking current is not exceeded in order not to overheat the motor. The braking device cannot be overloaded, as it limits the current even on full potentiometer setting to the nominal current of the unit. This status is indicated by the flashing „ready" LED.

Connection Example

for BN 903425 A

Connection Examples

for GB $903440 \mathrm{~A}, 60 \mathrm{~A}$

for GB 9034 from 100 A

MINISTART
Phase Controller

Block Diagrams

IN 9017/100

IN 9017/200

IN 9017/211

- Phase controller for resistive and motor load
- for permanent power up to 300 W
- Interference suppression limit value class B
- LED indication
- Devices available in 3 versions:

IN 9017/100: with current interface $4 \ldots 20 \mathrm{~mA}$ and broken wire detection
IN 9017/200: with voltage interface 0 ... 10 V
IN 9017/211: with voltage interface $0 \ldots 10 \mathrm{~V}$,
$\mathrm{U}_{\text {min }}$ adjustable, control input for max. output current

- Width: 53 mm

Approvals and Markings

C ϵ

Application

- Resistive load
- Infrared heating
- Fan
- Volume compressor

Function

Phase controllers robust electronic units to control the voltage by phase chopping. The Phase chopping angle is adjusted on a control input. (IN 9017/100: 4 ... 20 mA , IN 9017/200: 0 ... 10 V) verstellt.

The variant IN 9017/211 is realised with $0 \ldots 10 \mathrm{~V}$ input and voltfree contact input Q1, Q2.
When contact input Q1, Q2 is open the output remains off at $0-3 \mathrm{~V}$. With 3 V control voltage the voltage adjusted on potentiometer Umin is switched on. When rising the control voltage continuously up to 10 V on the input, the output voltage increases up to AC 230 V . By closing the contact on Q1, Q2 the the output supplies the max. voltage.

Indication

LED green: supply voltage is present
LED yellow
at IN 9017/100:
Permanent on, when control current $>4 \mathrm{~mA}$ flashes 1 time, when control current $<4 \mathrm{~mA}$ (cable break) flashes 2 times, when mains frequency is outside limits at IN 9017/200: Permanent on, when full voltage on motor is present flashes 1 time, when phase gating is active flashes 2 times, when mains frequency is outside limits Permanent on, when full voltage on motor is present flashes 1 time, when phase gating is active flashes 2 times, when mains frequency is outside limits flashes 3 times, when setpoint <3 volt and Q_{1}, Q_{2} are open

Notes

If the power semiconductor should be protected against short circuit or ground fault during operation a superfast fuse needs to be installed (see technical details). If not the standard line protection fuses must be used. The phase controller must not be operated with capacitive load on the output. To provide safety for people and equipment, only trained staff must work on this unit.

Technical Data	
Motor voltage	
IN 9017/100:	AC $48 \mathrm{~V} \quad \pm 10 \%$
IN 9017/100:	AC 115 V (10%
IN 9017/100:	AC $230 \mathrm{~V} \quad \pm 10 \%$
IN 9017/200:	AC 115 V ($\pm 10 \%$
IN 9017/200:	AC $230 \mathrm{~V} \quad \pm 10 \%$
IN 9017/211:	AC $230 \mathrm{~V} \quad \pm 10 \%$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Nominal load P_{N} :	300 W at AC 230 V
	150 W at AC 115 V
Min. power:	approx. $0.1 \mathrm{P}_{\mathrm{N}}$
Rated current:	1.3 A
Semiconductor fuse (superfast):	20 A
Setting range output voltage	
IN 9017/100:	AC 48 V AC $12 \ldots 36 \mathrm{~V}$
IN 9017/100:	AC 115 V AC $29 \ldots 86 \mathrm{~V}$
IN 9017/100:	AC 230 V AC $58 \ldots 172 \mathrm{~V}$
IN 9017/200:	AC 115 V AC $20 \ldots 115 \mathrm{~V}$
IN 9017/200:	AC 230 V AC $40 \ldots 230 \mathrm{~V}$
IN 9017/211:	$\begin{aligned} & A C 230 \mathrm{~V} \quad A C U_{\min } \ldots 230 \mathrm{~V} \\ & \mathrm{U}_{\min } \mathrm{AC} 80 \ldots 200 \mathrm{~V} \end{aligned}$
Recovery time:	200 ms
Consumption:	1.4 VA
Control input	
IN 9017/100:	$4 \ldots 20 \mathrm{~mA} \quad \mathrm{R}_{\mathrm{i}}=82.5 \Omega$
IN 9017/200:	$0 \ldots 10 \mathrm{~V} \quad \mathrm{R}_{\mathrm{i}}=50 \mathrm{k} \Omega$
IN 9017/211:	$0 \ldots 10 \mathrm{~V} \quad \mathrm{R}_{\mathrm{i}}=50 \mathrm{k} \Omega$
	$\mathrm{Q}_{1}, \mathrm{Q}_{2}$, volt free

General Data		
Nominal operating mode: Temperature range: Storage temperature:	continuous operation	
	$0 \ldots+55^{\circ} \mathrm{C}$	
	$-25 \ldots+75^{\circ} \mathrm{C}$	
Clearance and creepage distance		
Rated impulse voltage /		
EMC		
Electrostatic discharge:	8 kV (air)	IEC/EN 61 000-4-2
HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	2 kV	IEC/EN 61 000-4-4
Surge voltage		
wires for power supply:	1 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
HF-wire guided:	10 V	IEC/EN 61 000-4-6
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing:	IP 40	IEC/EN 60529
Terminals:	IP 20	IEC/EN 60529
Housing:	thermoplastic with VO behaviour	
Vibration resistance:	Amplitude 0.35 mm	
Climate resistance:	0/055/04	IEC/EN 60 068-1
Terminal designation:	EN 50005	
Wire connection:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or	
	$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228-1/-2/-3/-4	
Wire fixing:	Flat terminals with self-lifting clamping	
Mounting:	DIN-rail	IEC/EN 60715
Weight:	210 g	
Dimensions		

Dimensions

Width \mathbf{x} height \mathbf{x} depth: $53 \times 90 \times 61 \mathrm{~mm}$

Standard Types
IN 9017/100 AC 48 V 75 W
Article number:: 0062206
IN 9017/100 AC 115 V 150 W
Article number:: 0058431
IN 9017/100 AC 230 V 300 W
Article number:: 0065838
IN 9017/200 AC 115 V 150 W
Article number:: 0065592
IN 9017/200 AC 230 V 300 W
Article number:: 0058274
IN 9017/211 AC 230 V 300 W
Article number:: 0059425

Set-up Procedure

1. Wiring of the component according to connection example
2. Adjust required output voltage

Safety remarks

- Never clear fault when the device is switched on
- The user must ensure that the device and the necessary componentsare mounted and connected according to the locally applicable regulations and technical standards.
- After disconnection of the device dangerous voltages may be sensedfor several minutes on the connection terminals caused by filter capacitors.

Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor
 Please note, that the load is not physically separated from the mains. Because of this the load must be disconnected from the mains via the corresponding manual motor starter.

IN 9017/200 AC 230 V

IN 9017/211

IN 9017/100

IN 9017/200

SX 9240.01/01005; 5 A

Function Diagram

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- For speed control of 3-phase asynchronous motors up to 5.5 kW
- Speed adjustment by potentiometer on the front
- Additional galvanic separated control input for external speed control 0 ... 10 V
- $U_{\text {min }}$ and $U_{\text {max }}$ setting accessable behind screw cover
- Large motor voltage range
- Integrated temperature monitoring
- Fullfills the EMC requirement according to IEC/EN 61 000-6-4 limit class B, therefore screened wires are not necessary between motor and controller
- 2 changeover monitoring contacts
- LED indicators for alarm and status
- Connection for thermistor to monitor temperature
- 100 mm and 122 mm width

Approvals and Markings

Application

- Speed control of fans and pumps.

Speed control only works if the torque of the driven load rises with a quadratic function relative to the speed. Usually this is given with fans and pumps.

Function

Speed controllers are electronic devices designed to enable the speed control of 3-phase induction motors. The SX 9240 is a phase chopper device based on a thyristor circuit. The control input "Kickstart", bridge X7-X8, allows to ramp up the motor voltage to nominal value after start. After that the voltage is ramped down again to the required value with corresponding speed. The speed adjustment is made by a potentiometer on the front or by an external $0 \ldots 10 \mathrm{~V}$ input. The adjustment with the higher setting will take the control of the voltage/speed.

Temperature sensing

The temperature of the power semiconductors are monitored. If the permitted highest temperature is exceeded, motor, relay 1 and relay 2 are switched off. The red LED flashes code 1. This Alarm can only be reset after cooling down the device and temporarily cutting the auxiliary supply of the unit.

Motor temperature monitoring

A thermistor can be connected to terminals X 9-X 10. If the permitted motor temperature is exceeded the motor, relay 1 and relay 2 are switched off. The red LED flashes code 4. The unit remains in fault status until the failure is removed and the power supply is switched off and on again. If no thermistor is connected, $\mathrm{X} 9-\mathrm{X} 10$ must be bridged.

Adjustment of $U_{\text {min }}$ and $U_{\text {max }}$
With the potentiometers $U_{\text {min }}$ and $U_{\text {max }}$ the speed setting can be limited to a certain minimum and a maximum speed. The potentiometers are accessible behind a screw cover on the front of the unit.
On 230 V units the minimum voltage can be adjusted between $25 \mathrm{~V}_{\mathrm{rms}}$ and $140 \mathrm{~V}_{\mathrm{rms}}$ and the maximum voltage between $140 \mathrm{~V}_{\mathrm{rms}}$ and $230 \mathrm{~V}_{\mathrm{rms}}$.

Function

ON-OFF switch

The ON-OFF switch is not edge triggered. If the switch is in position ON, the motor will start after the voltage is connected.

Frequency test

When the unit is connected to voltage, the frequency is measured. If the frequency is out of the permitted limits $50 / 60 \mathrm{~Hz} \pm 10 \%$, relay 1 and relay 2 are switched off. The red LED flashes code 2. The unit remains in fault status until the failure is removed and the power supply is switched off and on again.

Relay function

Relay 1 (11-12-14): Energises when the unit is switched on and deenergises when the unit is switched off or goes mode.
into failure
Relay 2 (21-22-24): Energises when the unit is switched on and deenergises when the unit is switched off or goes into failure mode.

Block Diagram

Connection Diagrams

SX 9240.01/0_005

SX 9240.01/2_ 015

Indication

green LED: On, when supply connected
yellow LED: On, when motor connected to supply voltage flashing code 1: voltage is ramping up
red LED: flashing code 1: power semiconductors overheated flashing code 2: wrong mains frequency flashing code 4: motor overtemperature

Notes

Protection against short circuit

It is recommended to use superfast semiconductor fuses to protect the speed controller in the case of short circuits on the output side.

Thermal protection

The speed controllers are designed to operate motors up to the nominal load. To protect the motor against thermal overload a thermal overload device, a motor protection device or thermistor motor protection is required.

To select the right motor the following instructions must be observed: Between 0.6 and 1.0 of the nominal speed the current could be rise up to 50 \% higher than the nominal current. This effect is caused by the voltage control. To avoid overheating of the motor it must be declassified. I.e. a 3.3 kW motor can only loaded up to 2.2 kW . In spite of this measure a higher temperature cannot be avoided. Because of this the motor should be of isolation class F or H . In addition the windings should be monitored by means of a thermal contact or thermistor for overtemperature.

SX 9240.01/2_ 005

Notes

Motor noise

When the motor is running on low speed resonance can cause noise that may be disturbing.

Technical Data

Phase / motor voltage:
$\mathrm{L}-\mathrm{N}: \quad \mathrm{AC} 230 \mathrm{~V} \pm 10 \%$

Nominal frequency: $\quad 50 / 60 \mathrm{~Hz}$
Motor power

Type	SX 9240.01/01005	SX 9240.01/02005
heat sink	without	$22,5 \mathrm{~mm}$
power loss	5 W	12 W
Nominal current at $\vartheta \mathrm{u}=40^{\circ} \mathrm{C}:$	$5,0 \mathrm{~A}$	$11,5 \mathrm{~A}$
switching cycle	continuous operation	continuous operation

Min. motor power:	0.2 A
Ramp up time after	
Kickstart:	7.5 s
Hold time after Kickstart:	1 s
Ramp down time after	
Kickstart:	max. 7.5 s
Kickstart voltage:	AC 230 V
Power consumption:	1.2 W

Relay contacts		
Thermal continuous	5 A	
Switching capacity		
to AC 15		
NO contacts:	$3 \mathrm{~A} / 230 \mathrm{~V}$	IEC/EN 60 947-5-1
NC contacts:	$1 \mathrm{~A} / 230 \mathrm{~V}$	IEC/EN 60 947-5-1
Semiconductor fuse:	$1800 \mathrm{~A}^{2} \mathrm{~s}$	
External control input:	$0 \ldots+10 \mathrm{~V}$	
Input impedance:	$20 \mathrm{k} \Omega$	
Reference voltage:	$10 \mathrm{~V} / 15 \mathrm{~mA}$	
Setting potentiometer:	$22 \mathrm{k} \Omega$	
Input impedance:	$20 \mathrm{k} \Omega$	
Thermistor input		
NC contact, switching voltage:	24 V	
Input inpedance:	$50 \mathrm{k} \Omega$	
Ramp time:	approx. 5 sec from speed or max. spee	in. speed to max. to min. speed
Variation of motor voltage at AC 230 V :$25 \mathrm{~V}_{\text {eff }} \ldots 230 \mathrm{~V}_{\text {eff }}$		
General Data		
Temperature range: $\quad 0 \ldots+40^{\circ} \mathrm{C}$ (If the temperature ($20 \ldots 60^{\circ} \mathrm{C}$) exceeds the a. m. range the nominal current can be increased by $2 \% /{ }^{\circ} \mathrm{C}$ on lower temperature or must be decreased by $2 \% /{ }^{\circ} \mathrm{C}$ on higher temperature.)		
Storage temperature:	$-25 \ldots+75^{\circ} \mathrm{C}$	
Clearance and creepage distances rated impulse voltage / pollution degree		
Control voltage to motor voltage:	$4 \mathrm{kV} / 2$	IEC 60 664-1
Auxiliary voltage to motor voltage:	$4 \mathrm{kV} / 2$	IEC 60 664-1
EMC		
Electrostatic discharge:	8 kV (air)	IEC/EN 61 000-4-2
HF-irradiation:	$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
Fast transients:	2 kV	IEC/EN 61 000-4-4
Surge voltages between		
wire for power supply:	1 kV	IEC/EN 61 000-4-5
Interference suppression:	Limit value class B	EN 55011
Radiated interference:	Limit value class B	EN 55011
Degree of protection:	IP 65	IEC/EN 60529
Vibration resistance:	Amplitude $0,35 \mathrm{~mm}$ frequency 10 ... 55 Hz	IEC/EN 60 068-2-6
Climate resistance:	$0 / 055 / 04$	IEC/EN 60 068-1
Terminal designation:	EN 50005	
Wire connection		
Load terminals:	$4 \mathrm{~mm}^{2}$ solid, or	
	$2.5 \mathrm{~mm}^{2}$ stranded	
Control terminals:	$1.5 \mathrm{~mm}^{2}$ stranded	
Relay terminals:	$2.5 \mathrm{~mm}^{2}$ stranded	
Net weight:		
5.0 A:	1280 g	
11.5 A:	1500 g	
Dimensions		

Dimensions

Width x height x depth:

$5 \mathrm{~A}:$	$100 \times 160 \times 165 \mathrm{~mm}$
$11.5 \mathrm{~A}:$	$122 \times 160 \times 165 \mathrm{~mm}$

Standard Types

SX 9240.01/01005

Article number

0058991

- 1-pole
- for motor currents up to 5 A
- with EMC-filter, Housing, ON/OFF switch and setting potentiometer
- without heat sink
- Control input for 0 ... 10 V
- Thermistor input
- with internal transformer
- 100 mm width

Variants

Ordering example for variants

Set-up Procedure

1.) Open enclosure. Connect device and motor according to circuit diagram.
2.) Remove bridge $X 8$ / $X 7$ when "Kickstart" is not required.
3.) Close enclosure and apply auxiliary voltage.
4.) Start unit with ON/OFF switch
5.) Turn speed setting potentiometer fully anticlockwise. Adjust $U_{\text {min }}$ potentiometer high enough, so that the motor starts. A humming motor at standstill should be avoided inorder not to heat up the motor unneccesarily. Turn speed setting potentiometer fully clockwise. Adjust $U_{\text {max }}$ potentiometer until the required max. speed is reached. The motor temperature should be checked on low and medium speed. If necessary the motor must be cooled.

Safety Instructions

- Never clear fault when the device is switched on.

Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments, e.g. adjustment of $U_{\text {min }}$, $U_{\max }$ may only be carried out by qualified specialist staff and the applicable safety rules must be observed. Wiring and disconnection work must only be made when the unit is isolated from the mains.
- After disconnection of the device dangerous voltages may be sensed for several minutes on the connection terminals caused by filter capacitors.

Application Example

SX 9240.03/00005; 2.5 A
SX 9240.03/01005; 5 A

SX 9240.03/02005; 11.5 A

Function Diagram

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- For speed control of 3-phase asynchronous motors up to 5.5 kW
- Speed adjustment by potentiometer on the front
- Additional galvanic separated control input for external speed control 0 ... $10 \mathrm{~V}, 0$... $20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$
- $U_{\text {min }}$ and $U_{\max }$ setting accessable behind screw cover
- Large motor voltage range
- Integrated temperature monitoring
- Fullfills the EMC requirement according to IEC/EN 61 000-6-4 limit class B, therefore screened wires are not necessary between motor and controller
- 2 changeover monitoring contacts
- LED indicators for alarm and status
- Connection for thermistor to monitor temperature
- $100 \mathrm{~mm}, 122 \mathrm{~mm}$ and 168 mm width

Approvals and Markings

Application

- Speed control of fans and pumps.

Speed control only works if the torque of the driven load rises with a quadratic function relative to the speed. Usually this is given with fans and pumps. Suitable motors: Asynchronous motors designed for voltage control (Rotor material Silumin or similar, isolation class F)

Function

Speed controllers are electronic devices designed to enable the speed control of 3-phase induction motors. The SX 9240 is a phase chopper device based on a thyristor circuit. The control input "Kickstart", bridge X7-X8, allows to ramp up the motor voltage to nominal value after start. After that the voltage is ramped down again to the required value with corresponding speed. The speed adjustment is made by a potentiometer on the front or by an external $0 \ldots 10 \mathrm{~V}$ input. The adjustment with the higher setting will take the control of the voltage/speed.

Temperature sensing

The temperature of the power semiconductors are monitored. If the permitted highest temperature is exceeded, motor, relay 1 and relay 2 are switched off. The red LED flashes code 1. This Alarm can only be reset after cooling down the device and temporarily cutting the auxiliary supply of the unit.

Motor temperature monitoring

A thermistor can be connected to terminals X 9-X 10. If the permitted motor temperature is exceeded the motor, relay 1 and relay 2 are switched off. The red LED flashes code 4. The unit remains in fault status until the motor cools down and the power supply is switched off and on again. If no thermistor is connected, $\times 9-\times 10$ must be bridged.

Adjustment of $\mathrm{U}_{\text {min }}$ and $\mathrm{U}_{\text {max }}$
With the potentiometers $U_{\text {min }}$ and $U_{\text {max }}$ the speed setting can be limited to a certain minimum and a maximum speed. The potentiometers are accessible behind a screw cover on the front of the unit.
On 400 V units the minimum voltage can be adjusted between $110 \mathrm{~V}_{\mathrm{rms}}$ bis $160 \mathrm{~V}_{\mathrm{rms}}$ and the maximum voltage between $160 \mathrm{~V}_{\mathrm{rms}}$ bis $400 \mathrm{~V}_{\mathrm{rms}}$

Phase monitoring L1, L2, L3

The phases L1, L2 and L3 are monitored internally. If one of the 3 phases fails, motor, relay 1 and relay 2 are switched off. The red LED flashes code 3. The unit remains in fault status until the failure is removed and the power supply is switched off and on again. If 2 or 3 phases fail, the unit is no longer supplied. All LEDs go off, the relays de-energise and the motor is switched off.

Function

Phase sequence monitoring

For normal operation a right sequence is necessary. If wrong sequence is detected, the unit goes into failure mode. The red LED flashes code 6. The unit remains in fault status until the failure is removed and the power supply is switched off and on again.

ON-OFF switch

The ON-OFF switch is not edge triggered. If the switch is in position ON, the motor will start after the voltage is connected.

Frequency test

When the unit is connected to voltage, the frequency is measured. If the frequency is out of the permitted limits $50 / 60 \mathrm{~Hz} \pm 10 \%$, relay 1 and relay 2 are switched off. The red LED flashes code 2 . The unit remains in fault status until the failure is removed and the power supply is switched off and on again.

Relay function
Relay 1 (11-12-14)
Energises when the unit is switched on and deenergises when the unit is switched off or goes into failure mode.
Relay 2 (21-22-24): Energises when the unit is switched on and deenergises when the unit is switched off or goes into failure mode.

Block Diagram

Connection Diagrams

SX 9240.03/0_005

SX 9240.03/2_ 015

SX 9240.03/2_ 005

Indication

green LED: On, when supply connected
yellow LED: On, when motor connected to supply voltage
Flashing, when voltage is ramping up
red LED: flashing code 1: power semiconductors overheated
flashing code 2: wrong mains frequency
flashing code 3: phase failure
flashing code 4: motor overtemperature flashing code 6: wrong phase sequence

Notes

Protection against short circuit

It is recommended to use superfast semiconductor fuses to protect the speed controller in the case of short circuits on the output side.

Thermal protection

The speed controllers are designed to operate motors up to the nomina load. To protect the motor against thermal overload a thermal overload device, a motor protection device or thermistor motor protection is required

To select the right motor the following instructions must be observed: Between 0.6 and 1.0 of the nominal speed the current could be rise up to 50 \% higher than the nominal current. This effect is caused by the voltage control. To avoid overheating of the motor it must be declassified. I.e. a 3.3 kW motor can only loaded up to 2.2 kW . In spite of this measure a higher temperature cannot be avoided. Because of this the motor should be of isolation class F or H . In addition the windings should be monitored by means of a thermal contact or thermistor for overtemperature.

Motor noise

When the motor is running on low speed resonance can cause noise that may be disturbing.

Technical Data

Phase / motor voltage:

L1 - L2 - L3:	$3 \mathrm{AC} 400 \mathrm{~V} \pm 10 \%$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Motor power	

Type	SX 9240.03/00005	SX 9240.03/01005	SX 9240.03/02005
heat sink	without	22.5 mm	67.5 mm
power loss	10 W	20 W	50 W
Nominal current at $\vartheta \mathrm{u}=40^{\circ} \mathrm{C}$:	2.5 A	5.0 A	11.5 A
Switching cycle	continuous operation	continuous operation	continuous operation
Min. motor power: Ramp up time after		0.2 W	
		Ramp up time after	
Kickstart: 7		7.5 s	
Hold time after Kickstart:		1 s	
Ramp down time after			
Kickstart: 7		7.5 s	
Kickstart voltage: A		AC 400 V	
Power consumption: 1		1.2 W	
Relay contacts			
Thermal continuous			
current $\mathrm{t}_{\text {th }}$:	5	A	
Switching capacity			
NO contacts:		3 A / 230 V	IEC/EN 60 947-5-1
NC contacts: 1		1 A / 230 V	IEC/EN 60 947-5-1
Semiconductor fuse: 2		25 A superfast	
External control input:		$0 \ldots+10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$	
		$20 \mathrm{k} \Omega \quad 82,5 \Omega$	
Reference voltage: 1		$10 \mathrm{~V} / 15 \mathrm{~mA}$	
Setting potentiometer:		$22 \mathrm{k} \Omega$	
		$20 \mathrm{k} \Omega$	

Technical Data

Ramp time: approx. 5 sec from min. speed to max.
speed or max. speed to min. speed

Variation of motor voltage

at AC 400 V

SX 9240.03/0_005: $\quad 110 \mathrm{~V}_{\text {eff }} \ldots 400 \mathrm{~V}_{\text {eff }}$

General Data

Temperature range: $\quad 0 \ldots+40^{\circ} \mathrm{C}$

(If the temperature ($20 \ldots 60^{\circ} \mathrm{C}$) exceeds the a. m. range the nominal current can be increased by $2 \% /{ }^{\circ} \mathrm{C}$ on lower temperature or must be decreased by $2 \% /{ }^{\circ} \mathrm{C}$ on higher temperature.)

Storage temperature:
 $-25 \ldots+75^{\circ} \mathrm{C}$

Clearance and creepage

distances

rated impulse voltage / pollution degree
Control voltage to motor voltage:
Auxiliary voltage to motor voltage:
EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:

$4 \mathrm{kV} \mathrm{/} 2$	IEC 60 664-1
$4 \mathrm{kV} \mathrm{/} 2$	IEC 60 664-1
8 kV (air)	IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m}$	IEC/EN 61 000-4-3
2 kV	IEC/EN 61 000-4-4

Surge voltages
between
wire for power supply: Interference suppression:
Radiated interference:
Degree of protection:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Load terminals:

Control terminals:
Relay terminals:
Net weight:
2.5 A: $\quad 1280 \mathrm{~g}$
5.0 A: $\quad 1500 \mathrm{~g}$
11.5 A: $\quad 1680 \mathrm{~g}$

Dimensions

Width x height x depth:

$2.5 \mathrm{~A}:$	$100 \times 160 \times 165 \mathrm{~mm}$
$5.0 \mathrm{~A}:$	$122 \times 160 \times 165 \mathrm{~mm}$
$11.5 \mathrm{~A}:$	$168 \times 160 \times 165 \mathrm{~mm}$

Thermistor input

NC contact, switching voltage: 24 V
Input inpedance: $50 \mathrm{k} \Omega$

Standard Types

SX 9240.03/01005

Article number

0059141

- 3-pole
- for motor currents up to 5 A
- with EMC-filter, Housing, ON/OFF switch and setting potentiometer
- with heat sink 22.5 mm
- Control input for 0 ... 10 V
- Thermistor input
- with internal transformer
- 122 mm width

SX 9240.03/02005
Article number 0057511

- 3-pole
- for motor currents up to 11.5 A
- with EMC-filter, Housing, ON/OFF switch and setting potentiometer
- with heat sink 67.5 mm
- Control input for 0 ... 10 V
- Thermistor input
- with internal transformer
- 168 mm width

Variants

Ordering example for variants

Set-up Procedure

1.) Open enclosure. Connect device and motor according to circuit diagram.
2.) Remove bridge $X 8$ / $X 7$ when "Kickstart" is not required.
3.) Close enclosure and apply auxiliary voltage.
4.) Start unit with ON/OFF switch.
5.) Turn speed setting potentiometer fully anticlockwise. Adjust $U_{\text {min }}$ potentiometer high enough, so that the motor starts. A humming motor at standstill should be avoided inorder not to heat up the motor unneccesarily. Turn speed setting potentiometer fully clockwise. Adjust U_{m} potentiometer until the required max. speed is reached. The motor temperature should be checked on low and medium speed. If necessary the motor must be cooled.

Safety Instructions

- Never clear fault when the device is switched on.

Attention: This device can be started by potential-free contact, while connected directly to the mains without contactor (see application example). Please note, that even if the motor is at rest, it is not physically separated from the mains. Because of this the motor must be disconnected from the mains via the corresponding manual motor starter.

- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards.
- Adjustments, e.g. adjustment of $U_{\text {min }}, U_{\text {max }}$ may only be carried out by qualified specialist staff and theapplicablesafetyrulesmustbeobserved. Wiring and disconnection work must only be made when the unit is isolated from the mains.
- After disconnection of the device dangerous voltages may be sensed for several minutes on the connection terminals caused by filter capacitors.

Application Example

Product Description

The smart motorstarter UG 9410 can be used for softstart, softstop, reversing and protecting 3 phase asynchronous motors. By measuring the line current a thermal model is used to calculate the motor temperature, and in the case of overtemperature the motor is disconnected. In addition also a thermo switch can be used. The reversing is done via relays. The relays are switched without current flow, this provides long service life.

Function Diagram

$t_{u} \quad=$ switchover delay time
$t_{p}=$ overload response time according to M11727

Your Advantages

- Widely used measuring and automation protocol
- Up to 7 functions in one device
- Reversing anticlockwise,
- Reversing clockwise
- Softstart
- Softstop
- Motor protection
- Phase sequence monitoring
- Phase failure monitoring
- 80% less space
- Simple and time-saving commissioning as well as user-friendly
- Operation through parameterization via modbus
- Blocking protection
- Hybrid relay combines benefits of relay technology with non-wearing semiconductor technology
- High availablility by
- Temperature monitoring of semiconductors
- High withstand voltage up to 1500 V
- Load free relay reversing function
- Device overload
- Pluggable clamps
- TWIN- connection terminals to loop auxiliary supply and Bus

Features

- According to IEC/EN 60 947-4-2
- Modbus RTU-interface
- To reverse 3 phase motors up to 0.18 kW ... 2.2 kW at 400 V
- 2-phase softstart, softstop
- 3 potentiometer for setting the modbus adress and baud rate
- 5 LEDs for status indication
- Reversing with relays without current, softstart, softstop with thyristor
- Galvanic separation between control circuit and power circuit
- Width: 22.5 mm

Approvals and Markings

Applications

- Reversing operation for door and gate controls, bridge drives and lifting applications with monitoring of blockage
- Conveyor systems with monitoring of blockage
- Actuating drives in process controls with blockage monitoring

Connection Terminals

Terminal designation	Signal description
A1 (+)	Auxiliary voltage + DC 24 V
A2	Auxiliary voltage 0 V
A	Modbus signal A
B	Modbus signal B
L1	Phase voltage L1
L2	Phase voltage L2
L3	Phase voltage L3
T1	Motor connection T1
T2	Motor connection T2
T3	Motor connection T3

Function

Softstart

2 motor phases are controlled using thyristors, so that the motor current rises continuously. The starting torque behaves in the same way. This provides shock free starting and reduces mechanical failures. Starting timeand starting voltage can be adjusted via Modbus.

Softstop

2 motor phases are controlled using thyristors, so that the motor current drops continuously. The motor torque behaves in the same way on run down. This provides shock free stopping and reduces mechanical failures. Stopping time and stopping voltage can be adjusted via Modbus.

Motor protection

The thermal load of the motor is calculated using a thermal model. The current is measured in phase T3. A symmetric current load of all 3 phases of the motor is assumed for flawless functioning. When the trigger value stored in the trigger characteristics-, is reached, the motor is switched off and the device switches to fault 8.
The fault and motor leading can be acknowledged via Modbus.
Attention: The data of the thermal model is cleared through reset. In this case, the user must provide adequate cooling time of the motor.

Phase sequence detection

For correct function of the unit a clockwise phase sequence is required. The phase sequence monitoring feature checks on power up the sequence of the connected voltage and signals on anticlockwise sequence the fault 3. This fault can be cleared via Modbus.

Phase failure monitoring

After connecting the auxiliary supply, the unit checks if all 3 phases are correct. If one or more phases are missing, the unit indicates fault 4. This fault can be reset via Modbus.

Indicators

green LED "On": permanent on - supply connected

red LED "ERR": flashing	- Failure code of the device
yellow LED "Bus": flashing	- When receiving or transmitting Modbus data
yellow LED "L":permanent on - Motor turns anti-clockwise flashing	
yellow LED "R":softstart or softstop active on anti-clockwise turn	
permanent on - Motor turns clockwise	
flashing	- softstart or softstop active on clockwise turn

Failure code : 1- Overtemperature on semiconductors
2-Wrong mains freqency
3 - Phase reversal detected
4- Phase failure detected
7 - Incorrect temperature measurement circuit
8 - Motor protection has responded
9- Modubus communication failure
10-Checksum failure EEPROM
$1^{*)}-10^{*)}=$ Number of flashing pulses in sequence

Reset Function

By sending a reset command a reset can be operated via Modbus

Modbus RTU

For communication between motor controller and a supervising control the Modbus RTU protocol according to Specification V 1.1 b3 is used.

Setting

M11731_a

Position Potentiometer BAUD	1	2	3	4	5	6	7	8
Baud rate Baud	1200	2400	4800	9600	19200	38400	57600	115200
Response Time	<50 ms	<25 ms	<12 ms	<10 ms	<5 ms	<5 ms	<5 ms	<5 ms

Technical Data

Nominal voltage L1/L2/L3: Nominal frequency:
Auxiliary voltage:
Motor power:
Operating mode 5.0 A:

Surge current:
Load limit integral: Peak reverse voltage:
Overvoltage limiting:

Start / deceleration voltage: $\quad 30 \ldots 80 \%$ adjustable via Modbus
Start / deceleration ramp: $0 \ldots 10 \mathrm{~s}$ adjustable via Modbus
Consumption:
Switchover delay time: 2 W

Start up delay for master tick: min. 25 ms
Release delay for master tick: min. 30 ms
Current measurement: AC $0.5 \ldots 30 \mathrm{~A}$
Measuring accuracy: $\quad \pm 5 \%$ of end of scale value
Measured value update time at 50 Hz :

100 ms
at $60 \mathrm{~Hz}: \quad 83 \mathrm{~ms}$
Motor protection
up to 5.0 A :
Class 10 A
Electronically, with thermal memory
Reset:
manual via Modbus
Short circuit strength
max. fuse rating:
25 A gG / gL
IEC/EN 60 947-5-1

General Data

Operating mode:
Operation:
Storage:
Relative air humidity:
Altitude:
Clearance and creepage

distances

rated impuls voltage /
pollution degree
Motor voltage- control voltage
Motor voltage- Modbus:
Overvoltage category:
EMC
Electrostatic discharge:
HF-irradiation
80 MHz ... $1.0 \mathrm{GHz}:$
1.0 GHz ... $2.5 \mathrm{GHz}:$
2.5 GHz ... $2.7 \mathrm{GHz}:$

Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF wire guided:
Voltage dips
Interference emission
Wire guided:
Radio irradiation:
Harmonics:
Degree of protection:
Housing:
Terminals:
Vibration resistance:
Climate resistance:
Wire connection:

Removable terminal blocks

Wire connection

Phase voltage and motor pluggable screw terminal (S):

Wire connection:

Bus and auxiliary supply pluggable Twin-cage-clampterminal (PT):

Insulation of wires or sleeve length:
Fixing torque:

Continuous operation
$0 \ldots+65^{\circ} \mathrm{C}$ (see derating curve)
$-40 \ldots+70^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 1.000 m

6 kV/2
6 kV / 2
III
8 kV (air)
$10 \mathrm{~V} / \mathrm{m}$
$3 \mathrm{~V} / \mathrm{m}$
$1 \mathrm{~V} / \mathrm{m}$
2 kV

1 kV
2 kV
10 V

EC 60 664-1 IEC 60 664-1

IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5 IEC/EN 61 000-4-5 IEC/EN 61 000-4-6 IEC/EN 61 000-4-11

Limit value class B IEC/EN 60 947-4-2 Limit value class B IEC/EN 60 947-4-2

EN 61 000-3-2
IP 40
IEC/EN 60529
IEC/EN 60529
IP 20
Amplitude $0,35 \mathrm{~mm}$
Frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
$0 / 065 / 04$
IEC/EN 60 068-1
DIN 46 228-1/-2/-3/-4
$0.25 \ldots 2.5 \mathrm{~mm}^{2}$ solid or
0.25 ... $2.5 \mathrm{~mm}^{2}$ stranded ferruled
0.25 ... $1.5 \mathrm{~mm}^{2}$ solid or
0.25 ... $1.5 \mathrm{~mm}^{2}$ stranded ferruled

8 mm
$0.5 \ldots 0.6 \mathrm{Nm}$

Technical Data		
Mounting:	DIN rail	IEC/EN 60715
Weight:	220 g	
Dimensions		

Dimensions
Width x height x depth: $\quad 22.5 \times 105 \times 120.3 \mathrm{~mm}$

Standard Type	
UG 9410PM 3 AC $200 \ldots 480 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz} \quad 5.0 \mathrm{~A}$	
Article number:	0067521
- Nominal voltage:	$3 \mathrm{AC} 200 \ldots 480 \mathrm{~V}$
- Nominal motor current:	5.0 A
- Modbus RTU	
- Adjustable baud rate	
- Width:	

Derating curve:
Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Trigger characteristics
Motor overload protection

Setting Facilities

Potentiometer ADR10:

- Unit adress x 10

Potentiometer ADR1: - Unit adress $\times 1$
Potentiometer BAUD: - Baud rate
The module address and baud rate is only read after connecting the auxiliary supply!

Group fusing

Several motor starters can be wired in parallel on the supply side. Please make sure, that the total current cannot exceed 16 A . If several starters are use together and require more than 16 A , groups have to be split up for max 16 A .

Set-up Procedure

1. Connect motor and device according to application example. The 3 phases must be connected in correct sequence, wrong phase sequence will lead to failure (see failure code)
2. Setting unit adress and baud rate via potentiometer.
3. Power up the unit.
4. Parametrization via Modbus
5. At correct setting, the motor should ramp up continuously to full speed.

Safety Notes

- Never clear a fault when the device is switched on

Attention: This device can be started directly on the phase voltage without a contactor. Please be aware that the motor is still connected to the supply voltage also when it is not running. Therefore for work on motor and controller the supply has to be disconnected via E-stop.

- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG).
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.
- Touch proof security is only provided when the power connection terminals are plugged into the unit.

Application Example

Motor control with UG 9410 and PLC via Modbus

Bus Interface

Protocol Modbus Seriell RTU
Adress 1 bis 99
Baud rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud
Data bit 8
Stop bit 2
Parity none

More information about the interface, wiring rules, device identification and communication monitoring can be found in the Modbus user manual.

Function-Codes

At UG 9410 the following function codes are implemented:

Function- Code	Name	Description
0×03	Read Holding Register	Device parameter read word by word
0×04	Read Input Register	Actual values read word by word
0×05	Write Single Coil	Outputs write induvidually
0×06	Write Single Register	Device parameter write word by word
0×10	Write Multiple Register	Device parameter write in blocks

Device configuration

If required the device configuration data can be saved permanently by setting the the Bit "WriteKonfig to EEPROM". The data is copied from the EEPROM to the relevant register when connecting the auxiliary voltage. As the numbers of write cycles of an EEPROM are limited, the writing must not be done in cycles. In addition it is not possible to receive modbus telegrams during a period of 50 ms while writing the EEPROM.

Parameter table

Every slave owns an output- configuration- and actual value table. In these tables it is defined under which address the parameters can be found.

Single Coils (Control signals):

Register- Adress	Protocol- Adresse	Name	Value range	Description	Data type	Access rights
1	0	RunRight	0x0000 OxFF00	Motor turns right off Motor turns right on	BIT	write
2	1	RunLeft	0x0000 0xFF00	Motor turns left off Motor turns left on	BIT	write
3	2	Reset	0x0000 OxFF00	No function Device reset	BIT	write
4	3	WriteKonfig to EEPROM	0x0000 OxFF00	No function Save parameter	BIT	write

Holding Register (Device configuration):

| Register-
 Adress | Protocol-
 Adresse | Name | Value range | Description | Data type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40001 | 0 | Control word 1 | | | |

*) Parameters can be stored permanently in the EEPROM by setting the Bit "WriteKonfig to EEPROM"

Input Register (Device state and measuring values):

RegisterAdress	Protocol- Adresse	Name	Value range	Description	Data type	Access rights
30001	0	State word 1 Device failure	$0 \ldots 10$	0 : No failure 1: Overtemperature LT 2: Wrong freqency 3: Phase reversal 4: Phase failure 5: Motor blocked 6: 7: Temperatur circuit fault 8: Motor protection device actuated 9: Communication fault Modbus 10: Checksum failure EEPROM	UINT16	reading
30002	1	State word 2 State of device	$0 \ldots 6$	0: Device initialize 1: Wait for start 2: Softstart ramp 3: Clockwise On 4: Anti-clockwise On 5: Softstop ramp 6: Device in errormode	UINT16	reading
30003	2	Actual motor current	$0 \ldots 3000$	Actual motor current in $1 / 100 \mathrm{~A}$	UINT16	reading
30004	3	Motor load	$0 \ldots 100$	Motor load in \% from rated motor power	UINT16	reading

Product Description

The smart motorstarter UG 9411 can be used for softstart, softstop, reversing and protecting 1 phase asynchronous motors. By measuring the line current a thermal model is used to calculate the motor temperature, and in the case of overtemperature the motor is disconnected. In addition also a thermo switch can be used. The reversing is done via relays. The relays are switched without current flow, this provides long service life.

Function Diagram

$t_{u} \quad=$ Switchover delay time
$t_{p} \quad=$ Overload response time according to characteristic class 10A resp. 5 M11864

Your Advantages

- Up to 6 functions in one device
- Reversing anticlockwise,
- Reversing clockwise
- Softstart
- Softstop
- Motor protection
- Phase failure monitoring
- Widely used measuring and automation protocol
- 80 \% less space
- Simple and time-saving commissioning as well as user-friendly
- Operation through parameterization via modbus
- Blocking protection
- Hybrid relay combines benefits of relay technology with non-wearing semiconductor technology
- High availablility by
- Temperature monitoring of semiconductors
- High withstand voltage up to 1500 V
- Load free relay reversing function
- Device overload
- Pluggable clamps
- TWIN- connection terminals to loop auxiliary supply and Bus

Features

- According to IEC/EN 60 947-4-2
- Modbus RTU-interface
- To reverse 1-phase motors up to 50 ... 180 W or 180 W ... 1.1 kW at 230 V
- 1-phase softstart, softstop
- 3 potentiometer for setting the modbus adress and baud rate
- 5 LEDs for status indication
- Reversing with relays without current, softstart, softstop with thyristor
- Galvanic separation between control circuit and power circuit
- Width: 22.5 mm

Approvals and Markings

Applications

- Reversing operation for door and gate controls, bridge drives and lifting applications with monitoring of blockage
- Conveyor systems with monitoring of blockage
- Actuating drives in process controls with blockage monitoring

Connection Terminals

Terminal designation	Signal description
A1 $(+)$	Auxiliary voltage + DC 24 V
A2	Auxiliary voltage 0 V
A	Modbus signal A
B	Modbus signal B
L	Phase connection L
N	Neutral
T1	Motor connection T1
T2	Motor connection T2
T3	Motor connection T3

Function

Softstart

The motor phase is controlled using thyristors, so that the motor current rises continuously. The starting torque behaves in the same way. This provides shock free starting and reduces mechanical failures. Starting timeand starting voltage can be adjusted via Modbus.

Softstop

The motor phases is controlled using thyristors, so that the motor current drops continuously. The motor torque behaves in the same way on run down. This provides shock free stopping and reduces mechanical failures. Stopping time and stopping voltage can be adjusted via Modbus.

Motorschutz

Motor protection

The thermal load of the motor is calculated using a thermal model. The current is measured in phase N . When the trigger value - stored in the trigger characteristics-, is reached, the motor is switched off and the device switches to fault 8 .
The fault and motor leading can be acknowledged via Modbus.
Attention: The data of the thermal model is cleared through reset. In this case, the user must provide adequate cooling time of the motor.

Phase failure monitoring

After connecting the auxiliary supply, the unit checks if the phases L/N is correct. If L or L / N phases are missing, the unit indicates fault 4. This fault can be reset via Modbus.

Indicators

green LED "On": permanent on - supply connected
red LED "ERR": flashing \quad - Failure code of the device

yellow LED "Bus": flashing \quad\begin{tabular}{l}

- When receiving or

transmitting Modbus data
\end{tabular}

yellow LED "L": | permanent on - Motor turns anti-clockwise |
| :--- |
| flashing |
| - softstart or softstop active on |
| anti-clockwise turn |

yellow LED "R": | permanent on - Motor turns clockwise |
| :--- |
| flashing |
| - softstart or softstop active |
| on clockwise turn |

Failure code: 1-Overtemperature on semiconductors
2-Wrong mains freqency
4- Phase failure detected
7 - Incorrect temperature measurement circuit
8 - Motor protection has responded
9- Modubus communication failure
10-Checksum failure EEPROM
$1^{*)}-10^{*)}=$ Number of flashing pulses in sequence

Reset Function

By sending a reset command a reset can be operated via Modbus

Modbus RTU

For communication between motor controller and a supervising control the Modbus RTU protocol according to Specification V 1.1b3 is used.

Technical Data

Nominal voltage L1/N:
Nominal frequency:
Auxiliary voltage:
Motor power:
Operating mode:
7.0 A:
2.0 A:

Measured nominal current:
Surge current:
Load limit integral:
Peak reverse voltage:
Overvoltage limiting:
Leakage current in off state:
Start/deceleration voltage:
Start / deceleration ramp:
Consumption:
Switchover delay time:
Switchover delay time:

AC $230 \mathrm{~V} \pm 10 \%$
$50 / 60 \mathrm{~Hz}$, automatic detection
DC $24 \mathrm{~V} \pm 10 \%$
1.5 A ... 7.0 adjustable via Modbus
0.3 A ... 2.0 A adjustable via Modbus

AC 53a: 4-2: 100-30 IEC/EN 60947-4-2
AC 53a: 4-2: 100-30 IEC/EN 60947-4-2
7.0 A; 2.0 A
$200 \mathrm{~A}(\mathrm{tp}=20 \mathrm{~ms}$)
$200 \mathrm{~A}^{2} \mathrm{~s}(\mathrm{tp}=10 \mathrm{~ms})$
1500 V
AC 510 V
$<0.5 \mathrm{~mA}$
$30 . . .80 \%$ adjustable via Modbus
0 ... 10 s adjustable via Modbus
2 W
500 ms dependent of I
150 ms
Start up delay for master tick: min. 25 ms
Release delay for master tick: min .30 ms
Current measurement:

General Data
Operating mode:
Operation:
Storage:
Relative air humidity:

Altitude:

Clearance and creepage
distances
rated impuls voltage /
pollution degree
Motor voltage- control voltage
Motor voltage- Modbus:
Overvoltage category:
EMC
Electrostatic discharge:
HF-irradiation
80 MHz ... 1.0 GHz :
$1.0 \mathrm{GHz} . .2 .5 \mathrm{GHz}$:
2.5 GHz ... 2.7 GHz :

Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF wire guided:
Voltage dips
Interference emission
Wire guided:
Radio irradiation:
Harmonics:
Degree of protection:
Housing:
Terminals:
Vibration resistance:
Climate resistance:

Continuous operation
$0 \ldots+65^{\circ} \mathrm{C}$ (see derating curve)
$-40 \ldots+70^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 1.000 m

6 kV / 2 IEC 60 664-1
$6 \mathrm{kV} / 2 \quad$ IEC 60 664-1 III

8 kV (air)
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$3 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$1 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
2 kV IEC/EN 61 000-4-4

1 kV IEC/EN 61 000-4-5
2 kV
10 V
1 kV IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
IEC/EN 61 000-4-11
Limit value class B IEC/EN 60 947-4-2
Limit value class B IEC/EN 60 947-4-2
EN 61 000-3-2
IP $40 \quad$ IEC/EN 60529
IP 20 IEC/EN 60529
Amplitude $0,35 \mathrm{~mm}$
Frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
$0 / 065 / 04$ IEC/EN 60 068-1
IEC/EN 60 068-1

Technical Data

Wire connection:
Removable terminal blocks
Wire connection
Phase voltage and motor
pluggable screw terminal (S): $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ solid or 0.25 ... $2.5 \mathrm{~mm}^{2}$ stranded ferruled

Wire connection:
Bus and auxiliary supply
pluggable Twin-cage-clampterminal (PT):

Insulation of wires or
sleeve length:
Fixing torque:
Mounting:
Weight:
$0.25 \ldots 1.5 \mathrm{~mm}^{2}$ solid or
0.25 ... $1.5 \mathrm{~mm}^{2}$ stranded ferruled

8 mm
$0.5 \ldots 0.6 \mathrm{Nm}$
DIN rail
220 g

Dimensions
Width \mathbf{x} height x depth: $\quad 22.5 \times 105 \times 120.3 \mathrm{~mm}$

Standard Types

UG 9411PM AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 7.0 \mathrm{~A}$
Article number: 0067523

- Nominal voltage: AC 230 V
- Nominal motor current: 7.0 A
- Modbus RTU
- Adjustable baud rate
- Width: 22.5 mm

UG 9411PM AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ 2.0 A
Article number:

- Nominal voltage: 0067522
AC 230 V
- Nominal motor current:
2.0 A
- Modbus RTU
- Adjustable baud rate
- Width:
22.5 mm

Characteristics

Derating curve:
Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Trigger characteristics
Motor overload protection

Setting Facilities

Potentiometer ADR10:

- Unit adress x 10

Potentiometer ADR1:

- Unit adress x 1

Potentiometer BAUD:

- Baud rate

The module address and baud rate is only read after connecting the auxiliary supply!

Group fusing

Several motor starters can be wired in parallel on the supply side. Please make sure, that the total current cannot exceed 16 A . If several starters are use together and require more than 16 A , groups have to be split up for max 16 A.

Set-up Procedure

1. Connect motor and device according to application example. The 3 phases must be connected in correct sequence, wrong phase sequence will lead to failure (see failure code)
2. Setting unit adress and baud rate via potentiometer.
. Power up the unit.
3. Parametrization via Modbus
4. At correct setting, the motor should ramp up continuously to full speed.

Safety Notes

- Never clear a fault when the device is switched on

Attention: This device can be started directly on the phase voltage without a contactor. Please be aware that the motor is still connected to the supply voltage also when it is not running. Therefore for work on motor and controller the supply has to be disconnected via E-stop.

- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG).
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.
- Touch proof security is only provided when the power connection terminals are plugged into the unit.

Application Example

Motor control with UG 9411 and PLC via Modbus

Bus Interface

Protocol Modbus Seriell RTU
Adress 1 bis 99
Baud rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud
Data bit 8
Stop bit 2
Parity none

More information about the interface, wiring rules, device identification and communication monitoring can be found in the Modbus user manual.

Function-Codes

At UG 9411 the following function codes are implemented:

Function- Code	Name	Description
0×03	Read Holding Register	Device parameter read word by word
0×04	Read Input Register	Actual values read word by word
0×05	Write Single Coil	Outputs write induvidually
0×06	Write Single Register	Device parameter write word by word
0×10	Write Multiple Register	Device parameter write in blocks

Device configuration

If required the device configuration data can be saved permanently by setting the the Bit "WriteKonfig to EEPROM". The data is copied from the EEPROM to the relevant register when connecting the auxiliary voltage. As the numbers of write cycles of an EEPROM are limited, the writing must not be done in cycles. In addition it is not possible to receive modbus telegrams during a period of 50 ms while writing the EEPROM.

Parameter table

Every slave owns an output- configuration- and actual value table. In these tables it is defined under which address the parameters can be found.
Single Coils (Control signals):

Register- Adress	Protocol- Adress	Name	Value range	Description	Data type	Access rights
1	0	RunRight	0×0000 0xFF00	Motor turns right off Motor turns right on	BIT	
2	1	RunLeft	0x0000 $0 \times F F 00$	Motor turns left off Motor turns left on	BIT	write
3	2	Reset	0×0000 0xFF00	No function Device reset	BIT	write
4	3	WriteKonfig to EEPROM	0x0000 0xFF00	No function Save parameter	BIT	write

Holding Register (Device configuration):

RegisterAdress	ProtocolAdress	Name	Value range	Description	Data type	Access rights
40001	0	Control word 1	$0 \ldots 2$	Bit $0=$ Reset Bit $1=$ WriteKonfig to EEPROM	UINT16	write / reading
40002	1	Control word 2	0... 2	Bit $0=$ RunRight Bit 1 = RunLeft	UINT16	write / reading
40003	2	le Typ 2A le Typ 7A	$\begin{array}{\|l} \hline 30 \ldots 200 \\ 150 \ldots 700 \end{array}$	Nominal motor current in 1/100 A	UINT16	write / reading
40004	3	Mon *)	$30 \ldots 80$	Softstart voltage in \% from nominal voltage	UINT16	write / reading
40005	4	Ton *)	0... 100	Softstart ramp time in $1 / 10 \mathrm{~s}$	UINT16	write / reading
40006	5	Moff *)	80... 30	Softstop voltage in \% from nominal voltage	UINT16	write / reading
40007	6	Toff *)	$0 \ldots 100$	Softstop ramp time in $1 / 10 \mathrm{~s}$	UINT16	write / reading
40008	7	Timeout release	$0 \ldots 1$	$\begin{array}{\|l} \hline 0=\text { Disable } \\ 1=\text { Enable } \end{array}$	UINT16	write / reading
40009	8	Timeout	$0 \ldots 10000$	Timeout value in ms	UINT16	write / reading

*) Parameters can be stored permanently in the EEPROM by setting the Bit "WriteKonfig to EEPROM"

Input Register (Device state and measuring values):

RegisterAdress	ProtocolAdress	Name	Value range	Description	Data type	Access rights
30001	0	State word 1 Device failure	$0 \ldots 10$	0 : No failure 1: Overtemperature LT 2: Wrong freqency 3: Phase reversal 4: Phase failure 5: Motor blocked 6: 7: Temperatur circuit fault 8: Motor protection device actuated 9: Communication fault Modbus 10: Checksum failure EEPROM	UINT16	reading
30002	1	State word 2 State of device	$0 \ldots 6$	0: Device initialize 1: Wait for start 2: Softstart ramp 3: Clockwise On 4: Anti-clockwise On 5: Softstop ramp 6: Device in errormode	UINT16	reading
30003	2	Actual motor current	$0 \ldots 3000$	Actual motor current in $1 / 100 \mathrm{~A}$	UINT16	reading
30004	3	Motor load	$0 \ldots 100$	Motor load in \% from rated motor power	UINT16	reading

Product Description

The smart motorstarter function is a softstart, reversal and protection of 3-phase asynchronous motors. Overcurrent is detected when the set current is exceeded longer than 2 sec. Direction reversal takes place via relay switching. The relays are de-energised at this. This ensures a long service life.

Function Diagram

Your Advantages

- Up to 6 function in one unit
- Reversing anticlockwise
- Reversing clockwise
- Softstart
- Softstop
- Current monitoring or motor protection
- Galvanic separation via forcibly guided contacts contact distance min. 0.5 mm
- 80 \% less space
- Simple and time-saving commissioning as well as user-friendly operation through setting via potentiometers on absolute scales
- Blocking protection
- Hybrid relay combines benefits of relay technology with non-wearing semiconductor technology
- High availablility by
- Temperature monitoring of semiconductors
- High withstand voltage up to 1500 V
- Load free relay reversing function
- As option with disabling current monitoring

Features

- According to IEC/EN 60 947-4-2
- To reverse 3 phase motors up to 550 W to 4 kW
- 2-phase softstart
- max. 4 potentiometer für setting of starting torque, deceleration torque, softstart /-stop, overcurrent limit or rated motor current
- 4 LEDs for status indication
- Reversing with relays without current, softstart, softstop with thyristor
- Galvanic separated 24V-inputs for clockwise- and anticlockwise
- Reset button on front
- Connection facility for external reset button
- Relay indicator output for operation
- Indicator output at customers specification (on request)
- Galvanic separation between control circuit and power circuit
- Width: $22,5 \mathrm{~mm}$

Approvals and Markings

\section*{| $c \underbrace{\mathrm{UL}_{\mathrm{L}}}_{\text {Canada } / \text { USA }}$ US LISTED |
| :---: | :---: |}

Applications

- Reversing operation for door and gate controls, bridge drives and lifting applications with monitoring of blockage
- Conveyor systems with monitoring of blockage
- Actuating drives in process controls with blockage monitoring

Circuit Diagram

Connection Terminals
Terminal designation Signal description A1 (+) Auxiliary voltage + DC 24 V A2 Auxiliary voltage 0 V R+ Control input clockwise L+ Control input anti-clockwise NE Earth connection control input MAN Input for remote reset RES Output for remote reset $11,12,14$ Indicator relay for operation L1 Phase voltage L1 L2 Phase voltage L2 L3 Phase voltage L3 T1 Motor connection T1 T2 Motor connection T2 T3 Motor connection T3

Function

Soft start
Two motor phases are impacted through thyristor phase-fired control to allow a steady increase of the currents. The motor torque behaves in the same manner when ramping up. This ensures that the drive can start without jerking and the drive elements are not damaged. Starting time and starting torque can be adjusted via rotary switch.

Softstop (variant /1_ _)
The softstop function shall extend the natural running down time of the drive to also prevent jerky stopping.
The deceleration time is set with rotary switch ton, the running-down torque with rotary switch $\mathrm{M}_{\text {off }}$.

Motor protection (variant /1_ _)

The thermal load of the motor is calculated using a thermal model. The nominal motor current can be adjusted via potentiometer I_{e}. To calculate the thermal load the current is measured in phase T3.
A symmetric current load of all 3 phases of the motor is assumed for flawless functioning. When the trigger value - stored in the trigger characteristics -, is reached, the motor is switched off and the device switches to fault 8. The fault can be acknowledged via the reset button or reset input.
Attention: The data of the thermal model is cleared through reset or
 voltage failure. In this case, the user must provide adequate cooling time of the motor.

Phase failure

To make sure the motor is not loaded with asymmetric currents, a check takes place during motor start whether phases L1, L2 and L3 are present. If one or several phases are absent, the device switches to fault 4 . The fault can be acknowledged via the reset button or reset input.

Motor current protection (variant /0_ _)

To ensure blocking protection is in place, the motor current is monitored in T3. The switching threshold can be adjusted via potentiometer $I_{\max }$. In the event of overcurrent, the power semiconductors deactivate and the signal relay for normal operation is reset. The red "ERR" LED flashes code 5. This status is stored. The fault can be acknowledged by switching the auxiliary voltage off / on, operating the reset button or selecting the reset control input.

Motor connection (variant /_0_)

In off state or fault condition the motor terminals are isolated from the mains voltage by a 4 pole. forcibly guided contact relay. The contact opening is min .0 .5 mm .

Control inputs

Clockwise rotation and anticlockwise rotation can be selected via two control inputs. The input signal detected first is executed if both inputs are selected simultaneously. After the detected signal is cancelled, the rotational direction is reversed via the soft start function.
The control inputs have a common isolated ground connection NE.

Signalling output "Ready"

Contact $11 / 14$ is closed if no device fault is present.

Indication

green LED "ON": permanent on - auxiliary supply connected
yellow LED "R": permanent on - clockwise,
power semiconductors bridged
flashing - clockwise, ramp operation
yellow LED "L": permanent on - anticlockwise, power semiconductors bridged
red LED "ERROR": flashing - Error
$\begin{array}{ll}1^{*)} & - \text { Overtemperature on sem } \\ 2^{*)} & \text { - Wrong mains freqency } \\ 3^{*)} & - \text { Phase reversal detected }\end{array}$
$4^{*} \quad-\min .1$ phase is missing
5*) - Motor overcurrent detected
6*) - Mains isolating relay not disconnected
7*) - Incorrect temperature measurement
circuit
8*) - Motor protection has responded
$1^{*)}-8^{*)}=$ Number of flashing pulses in sequence

Reset Function

2 options are available to acknowledge the fault

Manual (reset button):

Acknowledgement is performed by operating the reset button at the front of the device. If the button is still actuated after 2 seconds, the device resumes the fault state.

Manual (remote acknowledgement):

Remote acknowledgement can be realised by connecting a button (N/O contact) between the terminals MAN and RES. Acknowledgement is triggered as soon as the contact of the button closes. If the button is still actuated after 2 seconds, the device resumes the fault state since a defect in the acknowledgement circuit cannot be ruled out.

Setting Facilities

Rotary switch $M_{o n}$: - Starting torque at softstart 30 ... 80 \%
Rotary switch $\mathrm{M}_{\text {off }}$ (variant / 1_{-}): - Deceleration torque at softstop 80 ... 30 \%
Rotary switch $\mathrm{t}_{\text {on }}$ / toff - Start / deceleration ramp $1 \ldots 10 \mathrm{~s}$
Rotary switch $t_{\text {on }} / \mathrm{t}_{\text {off }}$ (variant $/ 2 _$_): - Start / deceleration ramp $0 \ldots 1 \mathrm{~s}$
Rotary switch $I_{\max }$ (variant /__0): - Motor current monitoring $5 \ldots 50 \mathrm{~A}_{\text {eff }}$ Rotary switch $I_{e}\left(\right.$ Variante /_-1): - Nom. motor current $1.6 \mathrm{~A}_{\text {eff }} \ldots 9.0 \mathrm{~A}_{\text {eff }}$

Setting of start / deceleration ramp

Set-up Procedure

1. Connect motor and device according to application example. A clockwise rotating field is assumed for operation. A anti-clockwise rotating field triggers a fault message.
2. Turn rotary switch $t_{\text {on }} / t_{\text {off }}$ fully clockwise, $M_{\text {on }}$ e. g. $M_{\text {off }}$ fully anticlockwise and rotary switch $I_{\max }$ e. g. I_{e} of the requrired current.
3. Connect voltage and starting via input R- or softstop L-.
4. The starting time is set by turning the rotary switch ton anti-clockwise and the starting torque is set by turning the rotary switch $\mathrm{M}_{\text {on }}$ clockwise to the desired value. If set correctly, the motor shall swiftly accelerate to the nominal speed.

Safety Notes

Attention !

- Never clear a fault when the device is switched on.
- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG)
- Adjustmentsmayonlybecarriedoutbyqualifiedspecialiststaffand the applicable safety rules must be observed.
- After a short circuit the motor starter is defective and has to be replaced (Assignment type 1).
- Group supply:
- If several motor starters are protected together, the sum of the motor currents must not exceed 25 A .

Mounting Notes

The phase current in the device is measured with a hall effect sensor. Due to this principle also magnetic fields next to the sensor may have an influence. When designing circuits with this motorstarter components that generate magnetic fields like contactors, transformers, high current wires should not be placed close to the sensor

position of the current sensor

Technical Data

Nominal voltage L1/L2/L3: 3 AC 200 ... 480 V $\pm 10 \%$
Nominal frequency: $\quad 50 / 60 \mathrm{~Hz}$, automatic detection
Auxiliary voltage: $\quad \mathrm{DC} 24 \mathrm{~V} \pm 10 \%$
Motor power:
Min. motor power:
4 kW at AC 400 V
25 W
Operating mode:
$9 \mathrm{~A}: \quad$ AC 51
9 A :
Load limit integral:
Peak reverse voltage:
Overvoltage limiting:
AC 53a: 6-2: 100-30 IEC/EN 60947-4-2
$200 \mathrm{~A}(\mathrm{tp}=20 \mathrm{~ms}$)
$200 A^{2} \mathrm{~s}(\mathrm{tp}=10 \mathrm{~ms})$
1500 V
AC 550 V
Leakage current in off state:
Starting voltage:
Start / deceleration ramp:
$<3 \times 0.5 \mathrm{~mA}$
30 ... 80 \%

Start / deceleration ramp
at variant /2 _ ; /3_ :
$1 . . .10 \mathrm{~s}$

Consumption::
0... 1 s

Switchover delay time:

Start up delay

for master tick:
Release delay
for master tick: min. 50 ms
Overcurrent measuring device: AC 5 ... 50 A at variant /__0
Nominal motor current l_{e} : 1.6 A ... 9.0 A at variant /_ _1
Measuring accuracy: $\pm 5 \%$ of end of scale value
Measured value update time at 50 Hz

100 ms
at $60 \mathrm{~Hz}: \quad 83 \mathrm{~ms}$
Motor protection
I 1.5 A bis 6.8 A: Class 10 A
I_{e} 6.9 A bis 9.0 A : Class 5
Electronically, without thermal memory
Reset:
manual
Short circuit strength:
max. fuse rating:
25 A gG / gL
IEC/EN 60 947-5-1
Assignment type:
Electrcal life: $\quad>10 \times 10^{6}$ switching cycles
Inputs
Control input right, left:
Rated current:
DC 24 V
4 mA
Response value ON:
Response value OFF:
Connection:
DC V ... 5 V

Manuel:
polarity protected diode
DC 24 V
(connect button on terminals
"MAN" and "RES")

Indicator Outputs
RES: DC 24 V , semiconductor, short circuit proof, rated continuous current 0.2 A programmable at customers specification (on request)
Ready:
Contact:
Switching capacity
to AC 15
NO contact:
Changeover contact $250 \mathrm{~V} / 5 \mathrm{~A}$
1 changeover contact
NC contact: $1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1

Thermal current $I_{t h}$:
A/AC 230 V
IEC/EN 60 947-5-1

5 A
to AC 15 at 3 A, AC 230 V :
Mechanical life:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
2×10^{5} switch. cycles IEC/EN 60 947-5-1
30×10^{6} switching cycles
1800 switching cycles/h
4 A gG/gL
IEC/EN 60 947-5-1

Technical Data

General Data

Device type:
Operating mode:
Temperature range:
Operation:
Storage:
Relative air humidity:
Altitude:
Clearance and creepage distances
Rated insulation voltage:
overvoltage category /
contamination level
between control input- ,
auxiliary voltage and
Motor voltage respectively
indicator contact:
Overvoltage category:
EMC
Interference resistance
Electrostatic discharge (ESD):
HF-irradiation
80 MHz ... 1.0 GHz :
1.0 GHz ... 2.5 GHz:
2.5 GHz ... 2.7 GHz:

Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Voltage dips:
Interference emission
Wire guided:
Radio irradiation:
Degree of protection:
Housing:
Terminals:
Vibration resistance:
Climate resistance:
Wire connection:
Screw terminal
(fixed):
Control terminals
Cross section:
Power terminals
Cross section:

Insulation of wires or
sleeve length:
Fixing torque:
Wire fixing:
Mounting:
Weight:

Hybrid Motor Controller H1B
Continuous operation
$0 \ldots+60^{\circ} \mathrm{C}$ (see derating curve)
$-25 \ldots+75^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 1.000 m

500 V

4 kV / 2
IEC/EN 60 664-1
III

8 kV (air)
$10 \mathrm{~V} / \mathrm{m}$
$3 \mathrm{~V} / \mathrm{m}$
$1 \mathrm{~V} / \mathrm{m}$
2 kV

1 kV
2 kV
10 V
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5 IEC/EN 61 000-4-6
EC/EN 61 000-4-11
Limit value class B IEC/EN 60 947-4-2 Limit value class B IEC/EN 60 947-4-2
IP 40 IEC/EN 60529

IP 20 EC/EN 60529
Amplitude 0.35 mm
frequency 10 ... 55 Hz, IEC/EN 60 068-2-6
0 / 060 / 04
IEC/EN 60 068-1
DIN 46 228-1/-2/-3/-4
$1 \times 0.14 \ldots 2.5 \mathrm{~mm}^{2}$ solid or stranded wire with sleeve
$1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}$ solid or stranded wire with sleeve

8 mm
0.5 Nm
captive slotted screw
DIN rail IEC/EN 60715
220 g
Dimensions
Width \mathbf{x} height x depth:

UL-Data

Standards:

for all products:

- U.S. National Standard UL508, $17^{\text {th }}$ Edition
- Canadian National Standard - CAN/CSA-22.2 No. 14-13,12 ${ }^{\text {th }}$ Edition
with restrictions at motor switching power:
- ANSI/UL 60947-1, 3 ${ }^{\text {rd }}$ Edition (Low-Voltage Switchgear and Controlgear Part1: General rules)
- ANSI/UL 60947-4-2, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear Part 4-2: Contactors and Motor-Starters - AC Semiconductor Motor Controllers and Starters)
- CAN/CSA-C22.2 No. 60947-1-07, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear - Part1: General rules)
- CSA-C22.2 No. 60947-4-2-14, $1^{\text {st }}$ Edition (Low-Voltage Switchgear and Controlgear - Part 4-2: Contactors and Motor-Starters - AC Semiconductor Motor Controllers and Starters

Motor data:

UL 508, CSA C22.2 No. 14-13
3 AC 200 ... 480 V,
3-phase, 50 / 60 Hz up to 7.6 FLA, 45.6 LRA at $40^{\circ} \mathrm{C}$ up to 4.8 FLA, 28.8 LRA at $50^{\circ} \mathrm{C}$ up to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$

UL 60947-4-2, CSA 60947-4-2
3 AC 200 ... 300 V,
3-phase, 50 / 60 Hz : up to 7.6 FLA, 45.6 LRA at $40^{\circ} \mathrm{C}$ up to $4.8 \mathrm{FLA}, 28.8$ LRA at $50^{\circ} \mathrm{C}$ up to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$
3 AC 301 ... 480 V,
3-phase, 50 / 60 Hz : up to 2.1 FLA, 12.6 LRA at $60^{\circ} \mathrm{C}$
Motor protection
I 1.5 A bis 6.8 A: Class $10 / 10 \mathrm{~A}$
I 6.9 A bis 9.0 A : Class 5
Electronically, without thermal memory
Reset: manual
Indicator output relay: $\quad 5$ A 240 V ac Resistive
Wire connection: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only

Connections

A1+, A2, X1+, X2, MAN,
RES, NE, 11, 12, 14 :
L1, L2, L3, T1, T2, T3:
AWG 22-14 Sol/Str Torque
3.46 Lb-in (0.39 Nm)

AWG 30-12 Str Torque 5-7 Lb-in
(0.564-0.79 Nm)

Additional Notes:

- This device is intended for use on supply systems with a maximum voltage from phase to ground of 300 V (e.g. for a three phase-four wire system $277 / 480 \mathrm{~V}$ or on a three phase-three wire systems of 240 V), rated impulse withstand voltage of max. 4 kV
- Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical Amperes, 480 Volts maximum when protected by class CC, J or RK5 fuse rated maximum 20 A
- For use in pollution degree 2 Environment or equivalent
- The control circuits of this device shall be supplied by an isolated 24 Vdc power supply which output is protected with a fuse rated max. 4 A dc
- For installations according to Canadian National Standard C22.2 No. 14-13 (cUL Mark only) and supply voltages above 400V:
- Transient surge suppression devices shall be installed on the line side of this equipment and shall be rated 240 V (phase to ground), 415 V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4 kV
- Transient surge suppression devices shall be installed on the line side of this equipment and shall be rated 277 V (phase to ground), 480 V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4 kV

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Characteristics

Derating curve:
Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Variant / _ _ 1:
Trigger characteristics
Motor overload protection

Standard Type

UG 9256.11/010/61 3 AC $200 \ldots 480 \mathrm{~V} 9,0 \mathrm{~A} 1 \ldots 10 \mathrm{~s}$

Article number:

- Nominal voltage:
- Nominal current:
- Ramp time:
- Control input R, L
- With softstart
- Without mains isolating
- With overcurrent protection
- Width: 22.5 mm

Ordering Example

$0=$ Overcurrent protection
1 = Motor protection
$0=$ with mains isolating relay, on when no failure
$1=$ without mains isolating relay, on when no failure
$3=$ without mains isolating, relay, indicator relay at beginning to softstart on till end of softstop
4 = with mains isolating relay, indicator relay on while bridging relay on
$0=$ with softstart
1 = with softstart / softstop
2 = with softstart / softstop, with ramp off at time potentiometer $\mathrm{t}_{\text {on offf }} 0 \ldots 0,1=$ without ramp
$3=$ with softstart, with ramp off at time potentiometer $\mathrm{t}_{\text {on }} /$ off $0 \ldots 0,1=$ without ramp
4 = without softstart / softstop

Type

Application Example

Motor control with UG 9256 and PLC

Motor control with UG 9256 and switch

MINISTART
Smart Motorstarter with autom. phase sequence correction
UG 9256/804, UG 9256/807

Product Description

The smart motorstarter UG 9256/804 and is used to provide always a clockwise phase sequence and to start asynchronous motors. Independent of the the pase sequence on the input it will always provide clockwise sequence on the output to the motor. The unit also protects the motor against phase failure and motor overload. The relays of the reversing circuit switch without current. This provides a long electrical life.

Your Advantages

- Up to 3 functions in one unit
- Providing clockwise phase sequence at the motor connection terminals
- Phase failure detection
- Motorprotection Class 10 A, Class 5
- Galvanic mains separation by forcibly guided contacts contact opening min. 0.5 mm (UG 9256/807)
- 66 \% less space
- Simple and time-saving commissioning as well as user-friendly operation through setting via potentiometer on absolute scale
- Hybrid relay combines benefits of relay technology with non-wearing semiconductor technology
- High availablility by
- Temperature monitoring of semiconductors
- High withstand voltage up to 1500 V
- Load free relay reversing function

Features

- According to UL 60 947-4-2
- To reverse the rotary field
- For 3-phase motors with rated motor current from Ie 1,5 A ... 9,0 A
- 1 potentiometer für setting of rated motor current
- 3 LEDs for status indication
- Reversing with relays without current, switching with thyristor
- Galvanic separated 24V-inputs for clockwise
- Reset button on front
- Connection facility for external reset button
- Relay indicator output for operation
- Galvanic separation between control circuit and power circuit
- Galvanic separation of motor terminals from mains voltage in off state or fault condition (UG 9256/807)
- Width 22.5 mm

Approvals and Markings

Application

- Conveyor systems with preferred direction of rotation
- Actuating drives in process controls with preferred direction of rotation

UG 9256/807

Connection Terminals

Terminal designation	Signal description
A1 $(+)$	Auxiliary voltage + DC 24 V
A2	Auxiliary voltage 0 V
R+	Control input clockwise
L+	Control input anti-clockwise
NE	Earth connection control input
MAN	Output for remote reset
RES	Input for remote reset
11, 12, 14	Indicator relay for operation
L1	Phase voltage L1
L2	Phase voltage L2
L3	Phase voltage L3
T1	Motor connection T1
T2	Motor connection T2
T3	Motor connection T3

Functions

Motor protection (variant / 1__)

The thermal load of the motor is calculated using a thermal model. To calculate the thermal load the current is measured in phase T3.
A symmetric current load of all 3 phases of the motoris assumed forflawless functioning. When the trigger value - stored in the trigger characteristics -, is reached, the motor is switched off and the device switches to fault 8. The fault can be acknowledged via the reset button or reset input.
Attention: The data of the thermal model is cleared through reset or voltage failure. In this case, the user must provide adequate cooling time of the motor.

Phase failure

To make sure the motor is not loaded with asymmetric currents, a check takes place during motor start whether phases L1, L2 and L3 are present. If one or several phases are absent, the device switches to fault 4 . The fault can be acknowledged via the reset button or reset input.
Phase failure is detected when he phase is missing for at least 1 second.

Motor connection (UG 9256/807)

In off state or fault condition the motor terminals are isolated from the mains voltage by a 4 pole. forcibly guided contact relay. The contact opening is min .0 .5 mm

Control inputs

Clockwise rotation can be selected via one control input. The reference connection for the control input is the terminal NE. The control input is galvanically separated from the rest of the unit.

Signalling output "Ready"

Contact $11 / 14$ is closed if no device fault is present.

Indication

yellow LED "R":	permanent on	- clockwise, power semiconductors bridged
red LED "ERR": red LED "ERR":	short impulse	Phase reversal detected
	flashing	- Error
	1*)	- Overtemperature on semiconductors
	2*)	- Wrong mains freqency
	4*)	- Icorrect synchronisation signal
	6*)	- mains isolating energized
	7*)	- Incorrect temperature measurement circuit
	8*)	- Motor protection has responded

$1^{*)}-8^{*)}=$ Number of flashing pulses in sequence

Reset Function

2 options are available to acknowledge the fault

Manual (reset button):

Acknowledgement is performed by operating the reset button at the front of the device. If the button is still actuated after 2 seconds, the device resumes the fault state.

Manual (remote acknowledgement):

Remote acknowledgement can be realised by connecting a button (N/O contact) between the terminals MAN and RES. Acknowledgement is triggered as soon as the contact of the button closes. If the button is still actuated after 2 seconds, the device resumes the fault state since a defect in the acknowledgement circuit cannot be ruled out.

Setting Facilities

Rotary switch $\mathrm{I}_{\mathrm{e}}: \quad$ - Nom. motor current 1.5 $\mathrm{A}_{\text {eff }} \ldots 9.0 \mathrm{~A}_{\text {eff }}$

Set-up Procedure

1. Connect motor and device according to application example.

The unit works with clockwise or anticlockwise phase sequence.
2. Adjust the nominal current of the connected motor with potentiometer le
3. Connect devive to power and start motor via control input R.

Safety Notes

- Never clear a fault when the device is switched on
- The user must ensure that the device and the necessary component are mounted and connected according to the locally applicable regulations and technical standards (VDE, TÜV,BG).
- Adjustments may only be carried out by qualified specialist staff and the applicable safety rules must be observed.
- After a short circuit the motor starter is defective and has to be replaced (Assignment type 1).
- Group supply:

If several motor starters are protected together, the sum of the motor currents must not exceed 25 A .

Mounting Notes

When operated with rated continuous current the devices must not be placed closer than 10 mm side-by-side.

The phase current in the device is measured with a hall effect sensor. Due to this principle also magnetic fields next to the sensor may have an influence. When designing circuits with this motorstarter components that generate magnetic fields like contactors, transformers, high current wires should not be placed close to the sensor.

Technical Data

Nominal voltage L1/L2/L3: 3 AC 200 ... $480 \mathrm{~V} \pm 10 \%$
Nominal frequency: $\quad 50 / 60 \mathrm{~Hz}$, automatic detection
Auxiliary voltage: $\quad \mathrm{DC} 24 \mathrm{~V} \pm 10 \%$
Motor power:
Min. motor power:
Operating mode:
4 kW at AC 400 V
25 W
9.0 A:

AC 53a: 6-2: 100-30 IEC/EN 60947-4-2
Rated continuous current ${ }^{1)}$: 9.0 A
Measured nominal current
9.0 A

1) The rated continuous current is the arithmetic mean value of starting and rated operating current of the motor in a cycle.

Surge current:
Load limit integral:
Peak reverse voltage:
Overvoltage limiting:
Leakage current in off state:
Consumption:
Start up delay
for master tick:
Release delay
for master tick
Measuring accuracy:
Measured value update time
at 50 Hz :
00 ms
at 60 Hz :
83 ms

protection

$\mathrm{I}_{\mathrm{e}} 1.5 \mathrm{~A}$ to 6.9 A :
le 6.9 A to 9.0 A:
Short circuit strength:
max. fuse rating:
1500 V
AC 550 V
$<3 \times 0.5 \mathrm{~mA}$
2 W
min. 100 ms
min. 50 ms

Class 10 A
Class 5
25 A gL

200 A (tp $=20 \mathrm{~ms}$)
$200 \mathrm{~A}^{2} \mathrm{~s}(\mathrm{tp}=10 \mathrm{~ms})$
: AC 0.5 ... 50 A
$\pm 5 \%$ of end of scale value

IEC/EN 60 947-5-1
Inputs
Control input right:
Rated current:
Response value ON:
Response value OFF:
Connection:
Manuel:

Indicator Outputs
RES:
Ready:
Contact:
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at 3 A, AC 230 V :
Mechanical life:
Permissible switching frequency:
Short circuit strength
max. fuse rating:

DC 24 V
4 mA
DC $10 \mathrm{~V} \ldots 30 \mathrm{~V}$
DC 0 V ... 8 V
polarity protected diode
DC 24 V
(connect button on terminals
"MAN" and "RES")

DC 24 V , semiconductor, short circuit proof, rated continuous current 0.2 A Changeover contact $250 \mathrm{~V} / 5 \mathrm{~A}$ 1 Changeover contact

$3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
2×10^{5} switch. cycles IEC/EN 60 947-5-1	
15×10^{6} switching cycles	
1800 switching cycles/h	
$4 \mathrm{~A} \mathrm{gG} \mathrm{/} \mathrm{gL}$	IEC/EN 60 947-5-1

Technical Data

General Data

Operating mode: Temperature range:

Clearance and creepage

distances

overvoltage category /
contamination level
between control input- , auxiliary voltage and
Motor voltage respectively indicator contact:
EMC
Electrostatic discharge (ESD)
HF irradiation:
Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Voltage dips:
RF interference emission:
Radio interference,
Radio interference voltage,
Harmonics:
Degree of protection:
Housing:
Terminals:
Vibration resistance:

Climate resistance:
Wire connection:

Screw terminal

(fixed):
Cross section:
Insulation of wires or
sleeve length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
Dimensions

Width x height x depth: $\quad 22.5 \times 105 \times 120.3 \mathrm{~mm}$

Characteristics

Derating curve:
Rated continuous current depending on ambient temperature and distance Enclosure without ventilation slots

Trigger characteristics
Motor overload protection

Standard Types

UG 9256.11/804/61 3 AC 200 ... 480 V 9.0 A
Article number:

- Nominal voltage:
- Nominal current:
- Control input R
- Width:

0066450
3 AC 200 ... 480 V
9.0 A

UG 9256.11/807/61 3 AC $200 \ldots 480$ V 9.0 A
Article number:

- Nominal voltage:
- Nominal current: 0067133
AC 200 ... 480 V
- Main isolating
- Control input R
- Width:
22.5 mm

Application Example

Motor control with UG 9256/804 and PLC

Type Function	Type Function
BA	BI
BA 7924...................... Delay module, release delay	BI 5910 Radio controlled safety module
BD	BI 5928 Emergency stop module with time delay
BD 5935....................... Emergency stop module	BI 6910 Radio controlled safety module
BD 5980N.................... Two-hand safety relay	BL
BD 5987...................... Emergency stop module	BL 5903 Emergency stop module
BG	with voltage failure detection
BG 5551 Diagnostic module for CANopen	BL 5922 Emergency stop monitor
BG 5912 Output module with output contacts	BN
BG 5913.08/_0_ _ _ Input module	BN 3081....................... Extension module
BG 5913.08/_1 _ _ Input module	BN 5930.48.................. Emergency stop module
BG 5913.08/_2_ _ _ Input module	BN 5930.48/203............ Emergency stop module
BG 5913.08/_3_ _ _ Input module	BN 5930.48/204............ Emergency stop module
BG 5914.08/_0_ _ _ Input module	BN 5983 Emergency stop module
BG 5915.08/_1_ _ _ Input module	BO
BG 5924 Emergency stop module	BO 5988 Emergency stop module
BG 5925 Emergency stop module	HC
BG 5925/900 Light curtain controller	HC 3096N..................... Interface module
BG 5925/910 Safety-mat switch gear	HC 3098 Interface module
BG 5925/920 Switch gear for safety switch	HK
BG 5929 Extension module	HK 3087N Interface module
BG 5933 Two-hand safety relay	HL
BG 7925 Delay module, release delay	HL 3094....................... Interface module
BG 7926 Delay module, release delay	HL 3096N Interface module
BH	HO
BH 5552...................... Diagnostic module for CANopen	HO 3094 Interface module
BH 5902/01MF2 Light curtain controller	HO 3095 Interface module
BH 5903....................... Emergency stop module	IK
with voltage failure detection	IK 3079 Interface module
BH 5904/00MF2 Valve monitoring module	IL
BH 5910 Multifunction safety module	IL 7824........................ Delay module, release delay
BH 5911...................... Control unit	IN
BH 5913.08/_0_ _ _....... Input module	IN 7824....................... Delay module, release delay
BH 5914.08/_0_ _ _....... Input module	IP
BH 5915.08/_1_ _ - Input module	IP 3078 Interface module
BH 5922 Emergency stop monitor	IP 5924 Emergency stop module
BH 5928 Emergency stop module with time delay	
BH 5932 Speed or standstill monitor	
BH 5933 Two-hand safety relay	
BH 7925 Delay module, release delay	

Type Function	Type Function
LG	S
LG 3096...................... Interface module	SAFEMASTER M System overview
LG 5924....................... Emergency stop module	SAFEMASTER PRO System overview
LG 5925...................... Emergency stop module	SAFEMASTER STS/K... System overview
LG 5925/034................ Safety module for elevator controls	SAFEMASTER STS System overview
LG 5925/900................. Light curtain controller	SAFEMASTER W System overview
LG 5925/920................. Safety module for safety switches	Wireless safety system, e-stop
LG 5928...................... Emergency stop module with time delay	SAFEMASTER W System overview
LG 5929...................... Extension module	Wireless safety system, enabling switch
LG 5933...................... Two-hand safety relay	SP
LG 5944...................... Safety edge module	SP 3078...................... Interface module
LG 7927....................... Delay module, on delayed	UF
LG 7928...................... Delay module, release delay	UF 6925 \qquad . Emergency stop module UG
LH	UG 3088 Interface module
LH 5946....................... Standstill monitor	UG 3096 Interface module
MK	UG 6929ension module
MK 3096N.................... Interface module	UG 6960 Multifunctional safety timer
NE	UG 6961 Multifunctional safety timer
NE 5020....................... Magnetic switch coded	UG 6970 Multifunctional safety module
NE 5021....................... Magnetic switch coded	UG 6980 Multifunctional safety module
RE	UH
RE 5910....................... Remote control for e-stop	UH 3096 Interface module
RE 5910/011,	UH 5947 Speed monitor
RE 5910/013................. Industrial charger unit AC 230 V	UH 6900 Radio controlled safety module
RE 5910/012................. Industrial charger unit DC 24 V	UH 6932 Speed monitor
RE 6910........................ Radio controlled enabling switch	UH 6937 Frequency monitor
RK	
RK 5942....................... Emergency stop module	

Type Function	Type Function
AA	EP
AA 9050....................... Speed monitor	EP 5966...................... Fault annunciator system
AA 9837...................... Frequency relay	EP 5967...................... Fault annunciator system
AA 9838........................ Frequency relay	IK
AA 9943...................... Undervoltage relay	IK 8839 Current monitor
AD	IK 9044 Voltage monitor
AD 5960...................... Fault annunciator system	IK 9046 Voltage monitor
AD 5992....................... Fault annunciator system	IK 9055 Speed monitor
AD 5998....................... Fault annunciator system	IK 9065 Underload monitor ($\cos \varphi$)
Al	IK 9076 Valve monitor
AI 938 Thermistor motor protection relay	
AI 941N....................... Phase sequence relay	IK 9143 Frequency relay
Al 942 Asymmetry relay	IK 9144 Standstill monitor
AK	IK 9168 Phase indicator
AK 9840...................... Asymmetry relay	IK 9169 Phase monitor
BA	IK 9170 Overvoltage relay, 3-phase
BA 9036...................... Voltage relay	IK 9171 Undervoltage relay, 3-phase
BA 9037...................... Voltage relay	IK 9172 Overvoltage relay, single phase
BA 9038...................... Thermistor motor protection relay	IK 9173 Undervoltage relay, single phase
BA 9040...................... Asymmetry relay	IK 9178 Phase sequence indicator
BA 9041...................... Phase sequence relay	IK 9179 Phase sequence monitor /-relay
BA 9042...................... Asymmetry relay	IK 9270 Overcurrent relay
BA 9043...................... Undervoltage relay	IK 9271 Undercurrent relay
BA 9053....................... Current relay	IK 9272 Overcurrent relay
BA 9054...................... Voltage relay	IK 9273 Undercurrent relay
BA 9055...................... Speed monitor	IL
BA 9054/331................. Battery symmetry monitor	IL 5201/20007................ Overcurrent relay
BA 9054/332................. Battery symmetry monitor	IL 5880........................ Insulation monitor
BA 9065...................... Underload monitor ($\cos \varphi$)	IL 5881......................... Insulation monitor
BA 9094...................... Temperature monitoring relay	IL 5882........................ Residual current monitor
BA 9837....................... Frequency relay	IL 5990......................... Fault annunciator system
BC	IL 5991........................ Fault annunciator system
BC 9190N.................... Voltage drop detector	IL 8839......................... Current monitor
BD	IL 9055......................... Speed monitor
BD 5936....................... Standstill monitor	IL 9059........................ Phase sequence module
BD 9080...................... Phase monitor	IL 9069........................ Neutral monitor
BH	IL 9071......................... Undervoltage relay
BH 9097....................... Motor load monitor	IL 9075........................ Fuse monitor
BH 9098....................... Motor load transmitter	IL 9077........................ Over- and undervoltage relay
BH 9140...................... Reverse power monitoring	IL 9079......................... Undervoltage relay to detect auto-reclosing
EH	IL 9086 Phase monitor with
EH 5990...................... Display unit	thermistor motor protection
EH 5991...................... Display unit	IL 9087........................ Phase monitor
EH 5994...................... Display unit	IL 9094......................... Temperature monitoring relay
EH 5995...................... Display unit	IL 9144........................ Standstill monitor
EH 5996...................... Text display unit	IL 9151.......................... Level sensing relay
EH 9997...................... Fault annunciator system	IL 9163...................... Thermistor motor protection relay

Type Function	Type Function
IL 9171........................ Undervoltage relay, 3-phase	MK
IL 9176........................ Undervoltage relay, 3-phase with test key	MK 5130N.................... Noise filter
IL 9270........................ Overcurrent relay	MK 5880N.................... Insulation monitor
IL 9271........................ Undercurrent relay	MK 9003-ATEX Thermistor motor protection relay
IL 9277.......................... Over- and undercurrent relay	MK 9040N.................... Asymmetry relay
IL 9837........................Frequency relay	MK 9053N.................... Current relay
IN	MK 9054N Voltage relay
IN 5880/710................. Insulation monitor	MK 9055N.................... Speed monitor
IN 5880/711................. Insulation monitor	MK 9056N.................... Phase sequence relay
INFOMASTER B............. System overview	MK 9064N Voltage relay
IP	MK 9065...................... Underload monitor ($\cos \varphi$)
IP 5880 Insulation monitor	MK 9143N.................... Mains frequency monitor
IP 5880/711 Insulation monitor	MK 9151N.................... Level sensing relay
IP 9075 Fuse monitor	MK 9163N.................... Thermistor motor protection relay
IP 9077 Over- and undervoltage relay	MK 9163N-ATEX............ Thermistor motor protection relay
IP 9270 Overcurrent relay	MK 9300N.................... Multifunction measuring relay
IP 9271 Undercurrent relay	MK 9397N.................... Motor load monitor
IP 9277 Over- and undercurrent relay	MK 9837N.................... Frequency relay
IP 9278 Current asymmetry relay with integrated	MK 9837N/5_0 Frequency relay
current transformer up to 15 A	MK 9994 Lamp tester
IR	MK 9995 Lamp tester
IR 5882........................ Residual current monitor	ND
LG	ND 5015 Residual current transformer
LG 5130...................... Noise filter	ND 5016 Residual current transformer
LK	ND 5017 Residual current transformer
LK 5894 Insulation monitor	ND 5018 Residual current transformer
LK 5895 Insulation monitor	ND 5019 Residual current transformer
LK 5896 Insulation monitor	OA
MH	OA 9059 Phase sequence module
MH 5880 Insulation monitor	RK
MH 9055..................... Speed monitor	RK 9169...................... Phase monitor
MH 9064 Voltage relay	RK 9179...................... Phase sequence monitor /-relay
MH 9143..................... Mains frequency monitor	RK 9871...................... Undervoltage relay
MH 9300 Multifunction measuring relay	RK 9872...................... Phase monitor
MH 9397 Motor load monitor	RL
MH 9837N Frequency relay	RL 9836 Voltage relay
MH 9837/5_0 Frequency relay	RL 9853...................... Current relay
	RL 9854...................... Voltage relay
	RL 9075...................... Fuse monitor
	RL 9877 Phase monitor
	RN 5883 \qquad Residual current monitor, type B for AC and DC systems
	RN 5897/010 Insulation monitor
	RN 5897/300 Insulation monitor
	RN 9075 Fuse monitor
	RN 9877 Phase monitor

Type Function	Type	Function
BA	PF	
BA 9010 Softstarter	PF 9029	Softstarter for heating pumps
BA 9019 Softstarter with softstop	PH	
BA 9026 Softstarter with softstop	PH 9260	Solid-state relay / - contactor
BA 9034N Motor brake relay	PH 9260.92 .	Solid-state relay / - contactor
BF	PH 9260/042.	Solid-state relay / - contactor with
BF 9250 Solid-state contactor		analogue input for pulse package control
BF 9250/_ 8 Solid-state contactor	PH 9270 ...	Solid-state relay / - contactor
BF 9250/002 Semiconductor contactor		with load circuit monitoring
with analogue input for pulsed output	PH 9270/003	Solid-state relay / - contactor
BF 9250/042 Solid-state contactor with burst control		with load current measurement
BH	PI	
BH 9250...................... Solid-state contactor	PI 9260	Solid-state relay / - contactor
BH 9251....................... Semiconductor contactor	PK	
with current monitoring	PK 9260	Solid-state relay / - contactor
BH 9253 Reversing contactor		for resistive load
BH 9255 Reversing contactor	RP	
	$\begin{aligned} & \text { RP 9210/300.. } \\ & \text { SL } \end{aligned}$	Softstart / softstop with reverse function
BI	SL 9017	Softstarter
BI 9025 Softstarter	SX	
BI 9028 Softstarter with DC-brake	SX 9240.01.	Speed controller 1-phase
BI 9028/900 Softstarter for 1-phase motors	SX 9240.03	Speed controller 3-phase
BI 9034 Motor brake relay	UG	
BI 9254 Reversing contactor with softstart and	UG 9019	Softstarter with softstop
active power monitoring	UG 9256	Smart motorstarter
BL	UG 9256/804	Smart motorstarter with
BL 9025 Softstarter		autom. phase sequence correction
BN 9011...................... Softstarter	UG 9256/807	Smart motorstarter with
BN 9034....................... Motor brake relay		autom. phase sequence correction
	UG 9410.......	Smart motorstarter
GB 9034 Motor brake relay	$\begin{aligned} & \text { UG } 9411 \text {....... } \\ & \text { IUH } \end{aligned}$	Smart motorstarter
GF		
GF 9016 \qquad Softstarter and softstop device GI	UH 9018 ...	Softstarter
Gl 9014 Softstart- / softstop device		
GI 9015 \qquad Softstart- / softstop device		
IL 9017 Softstarter		
IL 9017/300 Softstarter with softstop		
IN		
IN 9017 Phase controller		

Type Function	Type	Function
AD	IG	
AD 866......................... Switching Relay	IG 3051........	.. Input-Output interface relay
AD 8851....................... Latching relay	IK	
BA	IK 3050	Interface relay
BA 7632....................... Stepping relay	IK 3070	Input-Output interface relay
BA 7961........................ Contact protection relay	IK 3076	Input-Output interface relay
BD	IK 3079 Interface module
BD 3083/100.................. Interface module	IK 5121 Protective diode module
BG	IK 8701	Input-Output interface relay /
BG 5595 Switched power supply		Switching relay
CA	IK 8802	Input-Output interface relay
CA 3056....................... Input-Output interface relay	IL	
CB	IL 5504........	CANopen PLC
CB 3056........................ Input-Output interface relay	IL 5507.......	Output module, analogue
CB 3057....................... Output interface relay	IL 5508......	Input module, analogue
CC	IL 8701......	.. Input-Output interface relay /
CC 3056 Input-Output interface relay		Switching relay
HC	IN	
HC 3093 Interface relay pluggable	IN 5509......	.. Input- / Output module, digital
HC 3093.__/3_............ Interface relay pluggable	IN 8701 Input-Output interface relay /
HC 3096N..................... Interface module		Switching relay
HC 3098 Interface module	IP	
HK	IP 3070/022.	Output interface relay
HK 3087N Interface module	IP 3078 Interface module
HL	IP 5502 Input module, digital
HL 3094........................ Interface module	IP 5503	Output module, digital
HL 3096N Interface module	LG	
HL 3096N._C/400 Interface module	LG 3096.......	.. Interface module
HO	MK	
HO 3094 Interface module	MK 3046 Interface relay
HO 3095 Interface module	MK 3096N....	.. Interface module
	MK 8804N....	.. Interface relay
	MK 8852 Latching relay
	ML	
	ML 3045.......	.. Input-Output interface relay
	ML 3059.......	.. Input interface relay

Type Function

RL
RL 5596
Switched power supply
SK
SK 3076 \qquad Input-Output interface relay
SP
SP 3078 \qquad Interface module

UG
UG 3076/007 Interface relay
UG 3088 Interface module
UG 3091 Interface module
UG 3096 Interface module
UG 5122 Diode module
UG 5123 Resistor module
UG 8851 Latching relay
UG 9460 Input- / Output module digital, for Modbus
UG 9461 \qquad Input- / Output module analogue, for Modbus

UH

UH 3096 Interface module

Type Function	Type Function
AA	IK
AA 7512...................... Timer	IK 7813....................... Timer
AA 7562...................... Timer	IK 7814 Timer
AA 7610...................... Timer	IK 7815 Fleeting action relay
AA 7616...................... Timer	IK 7816 Flasher relay
AA 7666...................... Timer	IK 7817N/200................ Multifunction relay
AA 9906/200................ Timer	IK 7818 Fleeting action relay
BA	IK 7819 Timer
BA 7864...................... Cyclic timer	IK 7820 Fleeting action relay
BA 7903...................... Timer	IK 7823 Timer
BA 7905...................... Timer	IK 7825 Timer
BA 7954...................... Timer	IK 7826 Fleeting action relay
BA 7962...................... Timer	IK 7827 Flasher relay
BA 7981...................... Flasher relay	IK 7854 Cyclic timer
BC	
BC 7930N.................... Timer	IK 9906 Timer
BC 7931N.................... Fleeting action relay	IK 9962 Timer
BC 7932N.................... Flasher relay	MK
BC 7933N.................... Timer	MK 7830N.................... Multifunction relay, digital
BC 7934N.................... Timer	MK 7850N/200.............. Multifunction relay
BC 7935N.................... Multifunction relay	MK 7851 Flasher relay
BC 7936N.................... Star-delta timer	MK 7852 Flasher relay
BC 7937N.................... Cyclic timer	MK 7853N.................... Star-delta timer
BC 7938N.................... Timer	MK 7854N.................... Cyclic timer
BC 7939N.................... Timer	MK 7858 Timer
EC	MK 7863 Timer
EC 7610...................... Timer	MK 7873N.................... Timer
EC 7616...................... Timer	MK 9906 Timer
EC 7666...................... Timer	MK 9906N.................... Timer
EC 7801...................... Timer	MK 9906N/600.............. Timer
EC 9621...................... Timer	MK 9908 Timer
EF	MK 9961 Timer
EF 7610...................... Timer	MK 9962 Timer
EF 7616...................... Timer	MK 9962N.................... Timer
EF 7666...................... Timer	MK 9988 Fleeting action relay
EH	MK 9989 Fleeting action relay
EH 7610...................... Timer	
EH 7616...................... Timer	
EH 7666....................... Timer	
EO	
EO 7864 Cyclic timer	

Type	Function
IK	
IK 307	Hybrid relay
IK 3071 \qquad Input interface relay	
IK 5115....................... Display unit	
IK 8701 Switching relay	
IK 8702 Remote switch (Impulse relay)	
IK 8702/200 Remote switch (Impulse relay)	
IK 8715 Priority relay	
IK 8717 Remote switch (Impulse relay)	
IK 8717/110 Remote switch (Impulse relay)	
IK 8800 Remote switch (Impulse relay)	
IK 8805 Remote switch f. central switch. op.	
IK 8807 Remote switch f. central switch. op.	
IK 8810 Staircase lighting time switch	
IK 8810/001 Staircase lighting time switch	
IK 8810/002 Staircase lighting time switch	
IK 8810/003 Staircase lighting time switch	
IK 8810/004 Staircase lighting time switch	
IK 8810/005 Fan control timer	
IK 8813....................... Energy saving time switch	
IK 8814 Light timing switch	
IK 8825Light timing switch	
IK 8830 Stepping switch	
IK 8832 Buzzer	
IK 9078 Mains relay	
IK 9171 Undervoltage relay, 3-phase	
IL	
IL 7824........................ Delay module	
IL 8701........................ Switching relay	
IL 8800........................ Remote switch (Impulse relay)	
IL 8805......................... Remote switch f. central switch. op.	
IL 8809 \qquad Remote switch for central and group switching operation	
IL 9171........................ Undervoltage relay, 3-phase	
IN	
IN 7824....................... Delay module	
IN 8701....................... Switching relay	
OA	
OA 8823 Energy saving time switch	
OA 8824 Light timing switch	
OA 8825 Light timing switch	

Type
 Function

RK

RK 8810/001.................. Staircase lighting time switch
RK 8810/002.................. Time switch with pre-warning
RK 8810/003.................. Light timing switch
RK 8810/004................... Energy saving time switch
RK 8810/005.................. Fan control timer
RK 8810/006.................. Energy saving time switch
RK 8810/100.................. Staircase lighting time switch
RK 8832........................ Buzzer
SK
SK 8702........................ Remote switch (Impulse relay)
SK 8702/200................... Remote switch (Impulse relay)
SK 8832......................... Buzzer
SK 9078.......................... Mains relay
SK 9171.......................... Undervoltage relay, 3-phase
SL
SL 9171........................ Undervoltage relay, 3-phase

DE	Notizen
EN	Notice
FR	Note

DE	Notizen
EN	Notice
FR	Note

[^0]: Time switches

 - Remote switches
 - Specific installation electronics

[^1]: $22.5 \times 85 \times 120 \mathrm{~mm}$
 $45 \times 85 \times 120 \mathrm{~mm}$ $90 \times 85 \times 120 \mathrm{~mm}$

[^2]: $45 \times 84 \times 121 \mathrm{~mm}$
 $67.5 \times 84 \times 121 \mathrm{~mm}$
 $112.5 \times 84 \times 121 \mathrm{~mm}$
 (10 A)
 (20 A)
 (40 A)

[^3]: I_{A} : Starting current / Blocking current
 Please take into account the motor data.
 Modern motors with efficiency class IE3 may have an inrush peek current of 10-12 times of the nominal motor current.

[^4]: BI 9028.38/011

[^5]: - If no standstill is detected, the BI 9034 stops braking after 10 s e.g. 30 s

